Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew C. Clark is active.

Publication


Featured researches published by Andrew C. Clark.


Critical Reviews in Food Science and Nutrition | 2011

Ascorbic Acid: A Review of its Chemistry and Reactivity in Relation to a Wine Environment

Marc P. Bradshaw; Celia Barril; Andrew C. Clark; Paul D. Prenzler; Geoffrey R. Scollary

Extensive reviews of research are available on the use of ascorbic acid, and its consequent degradation pathways, in physiological conditions or food matrices. However, very little information can be found for wine-related systems. This review highlights the relevant chemistry and reactivity of ascorbic acid with a focus on its behavior and potential behavior in a wine environment. The review describes the use of ascorbic acid as a complementary antioxidant preservative to sulfur dioxide along with the metal-catalyzed and radical-dependent manner by which it achieves this role. The relevant degradation products of ascorbic acid in aerobic and anaerobic conditions are presented as well as the interaction of these degradation products with sulfur dioxide and other wine-relevant sulfur compounds. Limitations in existing knowledge, especially regarding the crossover between the antioxidant and pro-oxidant roles of ascorbic acid, are identified.


Journal of Agricultural and Food Chemistry | 2011

Antioxidant action of glutathione and the ascorbic acid/glutathione pair in a model white wine

Francesca Sonni; Andrew C. Clark; Paul D. Prenzler; Claudio Riponi; Geoffrey R. Scollary

Glutathione was assessed individually, and in combination with ascorbic acid, for its ability to act as an antioxidant with respect to color development in an oxidizing model white wine system. Glutathione was utilized at concentrations normally found in wine (30 mg/L), as well as at concentrations 20-fold higher (860 mg/L), the latter to afford ascorbic acid (500 mg/L) to glutathione ratios of 1:1. The model wine systems were stored at 45 °C without sulfur dioxide and at saturated oxygen levels, thereby in conditions highly conducive to oxidation. Under these conditions the results demonstrated the higher concentration of glutathione could initially provide protection against oxidative coloration, but eventually induced color formation. In the period during which glutathione offered a protective effect, the production of xanthylium cation pigment precursors and o-quinone-derived phenolic compounds was limited. When glutathione induced coloration, polymeric pigments were formed, but these were different from those found in model wine solutions without glutathione. In the presence of ascorbic acid, high concentrations of glutathione were able to delay the decay in ascorbic acid and inhibit the reaction of ascorbic acid degradation products with the wine flavanol compound (+)-catechin. However, on depletion, the glutathione again induced the production of a range of different polymeric pigments. These results highlight new mechanisms through which glutathione can offer both protection and spoilage during the oxidative coloration of a model wine.


Analytica Chimica Acta | 2010

A robust method for quantification of volatile compounds within and between vintages using headspace-solid-phase micro-extraction coupled with GC-MS - Application on Semillon wines

Laure Rebière; Andrew C. Clark; Leigh M. Schmidtke; Paul D. Prenzler; Geoffrey R. Scollary

A headspace-solid-phase micro-extraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) method has been developed to quantify a range of volatile compounds in Hunter Valley Semillon wines. The fibre selected for the method was a 50/30 microm divinylbenzene/carboxen/polydimethylsiloxane fibre, a three-phase fibre that allows extraction and desorption of a wide range of volatile compounds of different chemical functionalities and polarities. Four internal standards, methyl isobutyl ketone, n-dodecane, 4-methyl-2-pentanol and ethyl nonanoate were used to monitor the SPME fibre extraction efficiency and integrity. Fibre integrity was monitored by plotting the ratio of the peak area for each internal standard divided by the sum of the peak area for all internal standards as a function of analysis number. The advantage of using four internal standards for better quality control of the fibre integrity is described. The identity of twenty-one volatile compounds was ascertained by comparison of their chemical characteristics (retention indices, mass spectra) with reference compounds using two columns of different polarities. Quantification was achieved using calibration curves constructed for each compound with linear regression equations having correlation coefficients (R(2)) ranging from 0.9717 to 0.9999. The method was applied to two Semillon wines (recent vintage and aged) representative of the Hunter Valley styles. As is typical of white wines, 3-methyl-1-butanol was quantified as the most concentrated volatile compound (83 and 66 mg L(-1) for the 2006 and the 1996 wines, respectively). The study highlights the use of well-defined procedures to ensure integrity of quantitative data where several fibres may be required during an extended study over one or more vintages.


Journal of Agricultural and Food Chemistry | 2011

Impact of Glutathione on the Formation of Methylmethine- and Carboxymethine-Bridged (+)-Catechin Dimers in a Model Wine System

Francesca Sonni; Evan G. Moore; Andrew C. Clark; Fabio Chinnici; Claudio Riponi; Geoffrey R. Scollary

This study was performed to assess the impact of glutathione on the reaction between (+)-catechin and carbonyl compounds in wine-related conditions. (+)-Catechin (0.50 mM) and either glyoxylic acid (0.25 mM) or acetaldehyde (0.25 mM) were added to a model wine system with 0.0, 0.25, and 2.5 mM of glutathione added. UPLC-DAD and LC-MS analysis showed that the formation of carbonyl-bridged (+)-catechin dimers was inhibited in the samples with a glutathione to carbonyl ratio of 10:1 compared to the samples without glutathione. At a ratio of 1:1, glutathione inhibited the acetaldehyde-bridged dimers but only had a minor impact on the glyoxylic acid-bridged dimers. Further investigations showed that this trend of inhibition by glutathione on the glyoxylic acid-derived dimer was independent of temperatures, 20 °C vs 45 °C, or the presence of metal ions, 0.2 mg/L copper(II) and 5 mg/L iron(II). (1)H NMR analysis and LC-MS analysis provided evidence that glutathione inhibited dimer formation via different mechanisms depending on the carbonyl compound. For acetaldehyde-derived dimers, the main mode of inhibition was the ability of glutathione to form a (methyl-glutathionyl-methine)-(+)-catechin complex. Alternatively, the formation of a glutathione-glyoxylic acid addition product impeded the reaction between glyoxylic acid with (+)-catechin. These results demonstrate that glutathione, at sufficient concentration, can have a substantial impact on carbonyl-derived polymerization reactions in wine-like conditions.


Critical Reviews in Food Science and Nutrition | 2011

Micro-oxygenation of red wine: techniques, applications, and outcomes.

Leigh M. Schmidtke; Andrew C. Clark; Geoff R. Scollary

Wine micro-oxygenation (MOX) is the controlled addition of oxygen to wine in a manner designed to ensure that complete mass transfer of molecular oxygen from gaseous to dissolved state occurs. MOX was initially developed to improve the body, structure, and fruitfulness in red wines with high concentrations of tannins and anthocyanins, by replicating the ingress of oxygen thought to arise from barrel maturation, but without the need for putting all wine to barrel. This review describes the operational parameters essential for the effective performance of the micro-oxidation process as well as the chemical and microbiological outcomes. The methodologies for introducing oxygen into the wine, the rates of oxygen addition, and their relationship to oxygen solubility in the wine matrix are examined. The review focuses on the techniques used for monitoring the MOX process, including sensory assessment, physicochemical properties, and the critical balance of the rate of oxygen addition in relation to maintaining the sulfur dioxide concentration. The chemistry of oxygen reactivity with wine components, the changes in wine composition that occur as a consequence of MOX, and the potential for wine spoilage if proper monitoring is not adopted are examined. Gaps in existing knowledge are addressed focusing on the limitations associated with the transfer of concepts from research trials in small volume tanks to commercial practice, and the dearth of kinetic data for the various chemical and physical processes that are claimed to occur during MOX.


Journal of Agricultural and Food Chemistry | 2013

Wine metabolomics: objective measures of sensory properties of semillon from GC-MS profiles.

Leigh M. Schmidtke; John Blackman; Andrew C. Clark; Paris Grant-Preece

The contribution of volatile aroma compounds to the overall composition and sensory perception of wine is well recognized. The classical targeted measurement of volatile compounds in wine using GC-MS is laborious and only a limited number of compounds can be quantified at any time. Application of an automated multivariate curve resolution technique to nontargeted GC-MS analysis of wine makes it possible to detect several hundred compounds within a single analytical run. Hunter Valley Semillon (HVS) is recognized as a world class wine with a range of styles. Subtle characters reliant upon the development of bottle maturation characteristics are a feature of highly esteemed HVS. In this investigation a metabolomic approach to wine analysis, using multivariate curve resolution techniques applied to GC-MS profiles coupled with full descriptive sensory analysis, was used to determine the objective composition of various styles of HVS. Over 250 GC-MS peaks were extracted from the wine profiles. Sensory scores were analyzed using PARAFAC prior to development of predictive models of sensory features from the extracted GC-MS peak table using PLS regression. Good predictive models of the sensorial attributes honey, toast, orange marmalade, and sweetness, the defining traits for HVS, could be determined from the extracted peak tables. Compound identification for these rated attributes indicated the importance of a range of ethyl esters, aliphatic alcohols and acids, ketones, aldehydes, furanic derivatives, and norisoprenoids in the development of HVS and styles. The development of automated metabolomic data analysis of GC-MS profiles of wines will assist in the development of wine styles for specific consumer segments and enhance understanding of production processes on the ultimate sensory profiles of the product.


Analytica Chimica Acta | 2012

Chemistry of ascorbic acid and sulfur dioxide as an antioxidant system relevant to white wine

Celia Barril; Andrew C. Clark; Geoffrey R. Scollary

The impact of the combined ascorbic acid and sulfur dioxide antioxidants on white wine oxidation processes was investigated using a range of analytical techniques, including flow injection analysis for free and total sulfur dioxide and two chromatographic methods for ascorbic acid, its oxidative degradation products and phenolic compounds. The combination of different analytical techniques provided a fast and simultaneous means for the monitoring of oxidation processes in a model wine system. In addition, the initial mole ratio of sulfur dioxide to ascorbic acid was varied and the model wine complexity was increased by the inclusion of metal ions (copper(II) and iron(II)). Sulfur dioxide was found not to be a significant binder of ascorbic acid oxidative degradation products and could not prevent the formation of certain phenolic pigment precursors. The results provide a detailed insight into the ascorbic acid/sulfur dioxide antioxidant system in wine conditions.


Analytica Chimica Acta | 2010

Determination of the impact of bottle colour and phenolic concentration on pigment development in white wine stored under external conditions.

Chantal Maury; Andrew C. Clark; Geoffrey R. Scollary

The exposure to sunlight of a Sauvignon blanc wine stored in bottles of different colours has been examined. Wine in darker bottles (Antique Green and French Green) showed considerably more colour development than wine in clear (Flint) or lighter (French Green) bottles, provided a high concentration of catechin-type phenolic compounds was present. Xanthylium pigments were identified by LC-MS as one of the main contributing phenolic pigments to the increased colour in the dark bottles. This is the first observation of yellow xanthylium pigments in a white wine. A Principal Component Analysis of the variation in absorbance measurements at Day 59 of the exposure further confirmed the importance of bottle colour on the result. One component, dominated by the darker Antique Green and Classic Green, reflected the development of colour at 440 and 520 nm. The second component, to which the Flint and French Green bottles contributed the most, was based on a decrease in the 280 nm absorbance. The implication of these results for the safe storage of wine is discussed.


Journal of Agricultural and Food Chemistry | 2011

Iron(III) tartrate as a potential precursor of light-induced oxidative degradation of white wine: studies in a model wine system.

Andrew C. Clark; Daniel A. Dias; Trevor A. Smith; Kenneth P. Ghiggino; Geoffrey R. Scollary

The potential for iron(III) tartrate to act as a photoactivator in light-induced oxidative degradation of white wine is described. Using a tartaric-acid-based model wine system containing 5 mg/L iron, exposure to light from a xenon arc lamp led to the oxidative degradation of tartaric acid and the production of glyoxylic acid. The critical wavelength of light for the degradation process was found to be below 520 nm. No glyoxylic acid was formed in the absence of iron and/or light. Flint glass offered little protection from the light-induced photodegradation of tartaric acid. Antique Green glass offered more protection but did not stop the photodegradation process.


Journal of Agricultural and Food Chemistry | 2010

The Influence of Stereochemistry of Antioxidants and Flavanols on Oxidation Processes in a Model Wine System: Ascorbic Acid, Erythorbic Acid, (+) -Catechin and ())-Epicatechin

Andrew C. Clark; Jochen Vestner; Celia Barril; Chantal Maury; Paul D. Prenzler; Geoffrey R. Scollary

The stereochemical influence of antioxidant and flavanol compounds on oxidation processes in a model wine system was studied. The diastereoisomers, ascorbic acid and erythorbic acid, were used as antioxidants in a model wine system containing either (+)-catechin or (-)-epicatechin as the oxidizable flavanol compound. Samples were stored at 45 degrees C for a period of 14 days and analyzed by UV/visible spectrometry, CIELab, UPLC-PDA, and LC-MS. The results showed that less brown oxidative coloration occurred for samples with erythorbic acid for a given flavanol compound, while (+)-catechin provided less yellow coloration for a given antioxidant. Although erythorbic acid was degraded faster than ascorbic acid, it was associated with less decay in the accompanying flavanol compound. Xanthylium cation pigments were identified as the major contributor to color development. Furthermore, the production of pigment precursors, previously identified as furanone-substituted flavanols, was confirmed in all cases and their corresponding xanthylium cation pigments were lower in the presence of erythorbic acid than ascorbic acid. The results demonstrate that erythorbic acid is more efficient at minimizing oxidative color development than ascorbic acid in the model wine system.

Collaboration


Dive into the Andrew C. Clark's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Celia Barril

Charles Sturt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Blackman

Charles Sturt University

View shared research outputs
Top Co-Authors

Avatar

Eric Wilkes

Australian Wine Research Institute

View shared research outputs
Top Co-Authors

Avatar

Paul A. Smith

Australian Wine Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge