Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew C. Dale is active.

Publication


Featured researches published by Andrew C. Dale.


PLOS ONE | 2013

Does Presence of a Mid-Ocean Ridge Enhance Biomass and Biodiversity?

Imants G. Priede; Odd Aksel Bergstad; Peter I. Miller; Michael Vecchione; Andrey V. Gebruk; Tone Falkenhaug; David S.M. Billett; Jessica Craig; Andrew C. Dale; Mark A. Shields; Gavin H. Tilstone; Tracey Sutton; Andrew J. Gooday; Mark Inall; Daniel O.B. Jones; Victor Martinez-Vicente; Gui Menezes; Tomasz Niedzielski; Þorsteinn Sigurðsson; Nina Rothe; Antonina Rogacheva; Claudia H.S. Alt; Tim Brand; Richard Abell; Andrew S. Brierley; Nicola J. Cousins; Deborah Crockard; A. Rus Hoelzel; Åge S. Høines; Tom B. Letessier

In contrast to generally sparse biological communities in open-ocean settings, seamounts and ridges are perceived as areas of elevated productivity and biodiversity capable of supporting commercial fisheries. We investigated the origin of this apparent biological enhancement over a segment of the North Mid-Atlantic Ridge (MAR) using sonar, corers, trawls, traps, and a remotely operated vehicle to survey habitat, biomass, and biodiversity. Satellite remote sensing provided information on flow patterns, thermal fronts, and primary production, while sediment traps measured export flux during 2007–2010. The MAR, 3,704,404 km2 in area, accounts for 44.7% lower bathyal habitat (800–3500 m depth) in the North Atlantic and is dominated by fine soft sediment substrate (95% of area) on a series of flat terraces with intervening slopes either side of the ridge axis contributing to habitat heterogeneity. The MAR fauna comprises mainly species known from continental margins with no evidence of greater biodiversity. Primary production and export flux over the MAR were not enhanced compared with a nearby reference station over the Porcupine Abyssal Plain. Biomasses of benthic macrofauna and megafauna were similar to global averages at the same depths totalling an estimated 258.9 kt C over the entire lower bathyal north MAR. A hypothetical flat plain at 3500 m depth in place of the MAR would contain 85.6 kt C, implying an increase of 173.3 kt C attributable to the presence of the Ridge. This is approximately equal to 167 kt C of estimated pelagic biomass displaced by the volume of the MAR. There is no enhancement of biological productivity over the MAR; oceanic bathypelagic species are replaced by benthic fauna otherwise unable to survive in the mid ocean. We propose that globally sea floor elevation has no effect on deep sea biomass; pelagic plus benthic biomass is constant within a given surface productivity regime.


Journal of Physical Oceanography | 2001

Coastal-Trapped Waves and Tides at Near-Inertial Frequencies

Andrew C. Dale; John M. Huthnance; Toby Sherwin

The nature of the transition in coastal-trapped wave behavior from trapped, subinertial modes to imperfectly trapped, superinertial waves (not modes), is investigated. When formulated purely in terms of pressure, the coastal-trapped wave eigenvalue problem admits a spurious inertial mode that distorts numerical calculations at nearby frequencies. By solving a pair of coupled equations, involving the component of velocity normal to the coastline as well as pressure, this spurious mode is removed. The transition through the inertial frequency is examined analytically by considering the effect on trapped inertial modes of a small frequency increment. It is shown that, to first order in this increment, modes remain trapped. At higher frequencies, the modal approach breaks down and a primitive equation model is used to represent the, now fully three-dimensional, situation. The scattering of energy from an oscillating barotropic alongshore flow by a topographic feature is considered. At superinertial frequencies, internal energy is scattered in all directions, although preferentially alongshore in the direction of coastal-trapped wave propagation. There is not a sudden change in behavior at the inertial frequency. As frequency becomes increasingly superinertial there is a gradual increase in the three-dimensionality of the response and a decrease in the proportion of energy represented by the trapped component. The work highlights the potential for spurs and canyons to generate alongslope-propagating internal tides.


Journal of Physical Oceanography | 2004

Direct Observations of Along-Isopycnal Upwelling and Diapycnal Velocity at a Shelfbreak Front*

John A. Barth; Dave Hebert; Andrew C. Dale; David S. Ullman

Abstract By mapping the three-dimensional density field while simultaneously tracking a subsurface, isopycnal float, direct observations of upwelling along a shelfbreak front were made on the southern flank of Georges Bank. The thermohaline and bio-optical fields were mapped using a towed undulating vehicle, and horizontal velocity was measured with a shipboard acoustic Doppler current profiler. A subsurface isopycnal float capable of measuring diapycnal flow past the float was acoustically tracked from the ship. The float was released near the foot of the shelfbreak front (95–100-m isobath) and moved 15 km seaward as it rose from 80 to 50 m along the sloping frontal isopycnals over a 2-day deployment. The floats average westward velocity was 0.09 m s−1, while a drifter drogued at 15 m released at the same location moved westward essentially alongfront at 0.18 m s−1. The float measured strong downward vertical velocities (in excess of 0.02 m s−1) associated with propagation of internal tidal solibores in...


Journal of Physical Oceanography | 2001

The hydraulics of an evolving upwelling jet flowing around a cape

Andrew C. Dale; John A. Barth

Upwelling jets flow alongshore in approximate geostrophic balance with the onshore pressure gradient induced by coastal upwelling. Observations of such jets have shown that they often move offshore downstream of capes, leaving a pool of upwelled water inshore. Comparisons are made between this behavior and the hydraulic transition of a potential-vorticity-conserving coastal current as it passes a topographic anomaly at which it is exactly critical to long coastal-trapped waves. An analytic 1.5-layer model of coastal hydraulics with constant potential vorticity in each layer predicts flow fields (i.e., jet separation) in critical situations that resemble observations. When scales approximate Cape Blanco on the Oregon coast, separation occurs at a jet transport of around 0.76 3 106 m3 s21, similar to observed transports. Time-dependent, semigeostrophic calculations suggest that, during an upwelling season, the jet would evolve from a weak flow, which was subcritical everywhere and symmetric about the cape, to an exactly critical state that made a transition from subcritical to supercritical structure at the head of the cape. The predicted flow field at critical transition consists of a narrow upwelling jet upstream of the cape that moves offshore and broadens at the cape. This critical state would be accompanied by a downstream jump back to subcritical conditions. Further upwelling-favorable winds would lead to transient waves that propagated upstream and downstream, modifying the upstream and downstream conditions and restoring criticality. Thus, the head of the cape exerts hydraulic control on the flow and prevents the jet transport from increasing above its critical level. Inherent in the hydraulic approach is the assumption that alongshore scales are large. For realistic alongshore scales, solutions modified by coastline curvature suggest that the convexity of the head of a cape slightly inhibits the transition to a strongly upwelled downstream state by increasing the required critical transport. In the presence of topographic features with finite alongshore scale, the hydraulic approach can be used to construct a flow field, although this flow field has an inherent error arising from the implicit assumptions regarding scales. Estimation of this error for topography representing Cape Blanco suggests that in places the cape is rather abrupt for hydraulic theory to be valid.


Journal of Physical Oceanography | 1996

The Extension of Baroclinic Coastal-Trapped Wave Theory to Superinertial Frequencies

Andrew C. Dale; Toby Sherwin

Abstract The problem of finding baroclinic coastal-trapped wave modes is generalized from subinertial to superinertial frequencies at which complete trapping can only occur in special cases. Modes are found by a numerical resonance searching method in which forcing is applied to a vertical slice normal to the shelf, and resonant responses identified. An example is considered with topography approximating the Iberian shelf and uniform stratification. The buoyancy frequency is chosen such that the lowest subinertial trapped wave modes combine buoyancy and vorticity effects, and their dispersion curves approach the inertial frequency from below. Superinertial analogs of the first three subinertial modes are identified and have a small imaginary component of wavenumber corresponding to alongshelf decay due to leakage of energy to the ocean. These superinertial modes are apparently not physically realizable, however, since they contain components that do not decay into the ocean. Nevertheless, they can be inte...


Journal of Geophysical Research | 2003

The front on the Northern Flank of Georges Bank in spring: 2. Cross‐frontal fluxes and mixing

David S. Ullman; Andrew C. Dale; Dave Hebert; John A. Barth

buoyancy fluxes are downward and most intense, reaching values of 5 � 10 � 7 W/kg, near the bottom at the edge of the bank and decrease both on- and off-bank. Horizontal, crossbank buoyancy fluxes are partitioned into mean, tidal pumping, and nontidal eddy components and are computed as a function of cross-isobath/vertical position by averaging in the along-isobath direction. The tidal pumping component is dominant over most of the cross-bank section with a peak value of � 1 � 10 � 4 W/kg, directed off-bank near the bank edge. A diagnosed tidal vertical velocity field is used with mean buoyancy gradients to compute the along-isopycnal skew flux. The horizontal component of this skew flux has similar spatial structure and magnitude to that of the observed tidal pumping flux. The divergent component of the skew flux, at depths above the bottom boundary layer, appears to be convergent north of the bank edge and divergent at the bank edge, suggesting that tidally driven advective processes drive buoyant bank water downward and off-bank at mid-depth and force the upwelling of deep, dense water near the bottom at the bank edge. INDEX TERMS: 4528 Oceanography: Physical: Fronts and jets; 4568 Oceanography: Physical: Turbulence, diffusion, and mixing processes; 4560 Oceanography: Physical: Surface waves and tides (1255); 4544 Oceanography: Physical: Internal and inertial waves; KEYWORDS: Georges Bank, tidal mixing front, GLOBEC, internal tide, skew eddy flux, turbulent mixing


Marine Pollution Bulletin | 2011

Sedimentation patterns caused by scallop dredging in a physically dynamic environment

Andrew C. Dale; Philip Boulcott; Toby Sherwin

Scallop dredging grounds in the Firth of Lorn, western Scotland, are juxtaposed with rocky reef habitats raising concerns that reef communities may be impacted by sediment disturbed by nearby scallop dredging. A particle-tracking model of sediment transport and settling is applied at two scales. In the near-field, a suspension of typical sand/gravel-dominated bed sediment is subjected to a steady current across the dredge track. In the far-field, silt particles, which may persist in suspension for multiple tidal cycles, are tracked in the context of a regional model of tidally-driven flow. The principal sedimentary risk to reef habitats is predicted to come from settling sand particles when dredge tracks approach within tens of metres of a reef. The cumulative effect of dredging at the relatively low intensities recorded in this region is not expected to have a significant long-term impact on suspended silt concentrations and settlement in this highly dispersive environment.


Harmful Algae | 2016

A high resolution hydrodynamic model system suitable for novel harmful algal bloom modelling in areas of complex coastline and topography

Dmitry Aleynik; Andrew C. Dale; Marie Porter; Keith Davidson

Fjordic coastlines provide sheltered locations for finfish and shellfish aquaculture, and are often subject to harmful algal blooms (HABs) some of which develop offshore and are then advected to impact nearshore aquaculture. Numerical models are a potentially important tool for providing early warning of such HAB events. However, the complex topography of fjordic shelf regions is a significant challenge to modelling. This is frequently compounded by complex bathymetry and local weather patterns. Existing structured grid models do not provide the resolution needed to represent these coastlines in their wider shelf context. In a number of locations advectively transported blooms of the ichthyotoxic dinoflagellate Karenia mikimotoi are of particular concern for the finfish industry. Here were present a novel hydrodynamic model of the coastal waters to the west of Scotland that is based on unstructured finite volume methodology, providing a sufficiently high resolution hydrodynamical structure to realistically simulate the transport of particles (such as K. mikimotoi cells) within nearshore waters where aquaculture sites are sited. Model-observation comparisons reveal close correspondence of tidal elevations for major semidiurnal and diurnal tidal constituents. The thermohaline structure of the model and its current fields are also in good agreement with a number of existing observational datasets. Simulations of the transport of Lagrangian drifting buoys, along with the incorporation of an individual-based biological model, based on a bloom of K. mikimotoi, demonstrate that unstructured grid models have considerable potential for HAB prediction in Scotland and in complex topographical regions elsewhere.


Geophysical Research Letters | 2015

Tidal mixing processes amid small‐scale, deep‐ocean topography

Andrew C. Dale; Mark Inall

The nature of tide-topography interaction reflects the topographic scales experienced by water parcels during their tidal excursions. In the deep ocean these scales are typically subkilometer, yet direct observations of tidal processes on such scales are lacking. At one site, a saddle amid steep and complex Mid-Atlantic Ridge topography, observations reveal tidally pulsed, bottom-trapped fronts, overflows, and lee waves in response to a tide combined with a mean flow of similar amplitude. The tidal pulsing of the fronts and overflows was only evident locally, and their phase became unpredictable over scales of hundreds of meters. Enhanced turbulence in a 100–200 m thick bottom boundary layer had an estimated dissipation rate of 2.6 × 10−2 W m−2, exceeding the large-scale average of tidal dissipation in mid-ocean ridge environments but by less than an order of magnitude. This site was not a dissipation “hotspot,” and the processes observed could provide widely distributed mixing to the meridional overturning circulation.


PeerJ | 2017

Largest baleen whale mass mortality during strong El Niño event is likely related to harmful toxic algal bloom

Verena Häussermann; Carolina S. Gutstein; Michael Beddington; David Cassis; Carlos Olavarría; Andrew C. Dale; Ana M. Valenzuela-Toro; María José Pérez-Alvarez; Héctor H. Sepúlveda; Kaitlin McConnell; Fanny E. Horwitz; Günter Försterra

While large mass mortality events (MMEs) are well known for toothed whales, they have been rare in baleen whales due to their less gregarious behavior. Although in most cases the cause of mortality has not been conclusively identified, some baleen whale mortality events have been linked to bio-oceanographic conditions, such as harmful algal blooms (HABs). In Southern Chile, HABs can be triggered by the ocean–atmosphere phenomenon El Niño. The frequency of the strongest El Niño events is increasing due to climate change. In March 2015, by far the largest reported mass mortality of baleen whales took place in a gulf in Southern Chile. Here, we show that the synchronous death of at least 343, primarily sei whales can be attributed to HABs during a building El Niño. Although considered an oceanic species, the sei whales died while feeding near to shore in previously unknown large aggregations. This provides evidence of new feeding grounds for the species. The combination of older and newer remains of whales in the same area indicate that MMEs have occurred more than once in recent years. Large HABs and reports of marine mammal MMEs along the Northeast Pacific coast may indicate similar processes in both hemispheres. Increasing MMEs through HABs may become a serious concern in the conservation of endangered whale species.

Collaboration


Dive into the Andrew C. Dale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Inall

Scottish Association for Marine Science

View shared research outputs
Top Co-Authors

Avatar

Dmitry Aleynik

Scottish Association for Marine Science

View shared research outputs
Top Co-Authors

Avatar

Marie Porter

Scottish Association for Marine Science

View shared research outputs
Top Co-Authors

Avatar

Toby Sherwin

Scottish Association for Marine Science

View shared research outputs
Top Co-Authors

Avatar

Dave Hebert

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

David S. Ullman

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

Peter I. Miller

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar

Keith Davidson

Scottish Association for Marine Science

View shared research outputs
Top Co-Authors

Avatar

Robert Turnewitsch

Scottish Association for Marine Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge