Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew C. Doherty is active.

Publication


Featured researches published by Andrew C. Doherty.


Physical Review Letters | 2007

Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox

Howard Mark Wiseman; Steve James Jones; Andrew C. Doherty

The concept of steering was introduced by Schrödinger in 1935 as a generalization of the Einstein-Podolsky-Rosen paradox for arbitrary pure bipartite entangled states and arbitrary measurements by one party. Until now, it has never been rigorously defined, so it has not been known (for example) what mixed states are steerable (that is, can be used to exhibit steering). We provide an operational definition, from which we prove (by considering Werner states and isotropic states) that steerable states are a strict subset of the entangled states, and a strict superset of the states that can exhibit Bell nonlocality. For arbitrary bipartite Gaussian states we derive a linear matrix inequality that decides the question of steerability via Gaussian measurements, and we relate this to the original Einstein-Podolsky-Rosen paradox.


Physical Review Letters | 2002

Adaptive homodyne measurement of optical phase

Michael A. Armen; John K. Au; John K. Stockton; Andrew C. Doherty; Hideo Mabuchi

We present an experimental demonstration of the power of feedback in quantum metrology, confirming the predicted [H. M. Wiseman, Phys. Rev. Lett. 75, 4587 (1995)]] superior performance of an adaptive homodyne technique for single-shot measurement of optical phase. For measurements performed on weak coherent states with no prior knowledge of the signal phase, adaptive homodyne estimation approaches closer to the intrinsic quantum uncertainty than any previous technique. Our results underscore the importance of real-time feedback for reaching quantum limits in measurement and control.


Physical Review A | 2004

Complete family of separability criteria

Andrew C. Doherty; Pablo A. Parrilo; Federico M. Spedalieri

We introduce a family of separability criteria that are based on the existence of extensions of a bipartite quantum state rho to a larger number of parties satisfying certain symmetry properties. It can be easily shown that all separable states have the required extensions, so the nonexistence of such an extension for a particular state implies that the state is entangled. One of the main advantages of this approach is that searching for the extension can be cast as a convex optimization problem known as a semidefinite program. Whenever an extension does not exist, the dual optimization constructs an explicit entanglement witness for the particular state. These separability tests can be ordered in a hierarchical structure whose first step corresponds to the well-known positive partial transpose (Peres-Horodecki) criterion, and each test in the hierarchy is at least as powerful as the preceding one. This hierarchy is complete, in the sense that any entangled state is guaranteed to fail a test at some finite point in the hierarchy, thus showing it is entangled. The entanglement witnesses corresponding to each step of the hierarchy have well-defined and very interesting algebraic properties that, in turn, allow for a characterization of the interior of the set of positive maps. Coupled with some recent results on the computational complexity of the separability problem, which has been shown to be NP hard, this hierarchy of tests gives a complete and also computationally and theoretically appealing characterization of mixed bipartite entangled states.


Physical Review Letters | 2002

Distinguishing Separable and Entangled States

Andrew C. Doherty; Pablo A. Parrilo; Federico M. Spedalieri

We show how to design families of operational criteria that distinguish entangled from separable quantum states. The simplest of these tests corresponds to the well-known Peres-Horodecki positive partial transpose (PPT) criterion, and the more complicated tests are strictly stronger. The new criteria are tractable due to powerful computational and theoretical methods for the class of convex optimization problems known as semidefinite programs. We successfully applied the results to many low-dimensional states from the literature where the PPT test fails. As a by-product of the criteria, we provide an explicit construction of the corresponding entanglement witnesses.


Siam Journal on Control and Optimization | 2009

Network Synthesis of Linear Dynamical Quantum Stochastic Systems

Hendra Ishwara Nurdin; Matthew R. James; Andrew C. Doherty

The purpose of this paper is to develop a synthesis theory for linear dynamical quantum stochastic systems that are encountered in linear quantum optics and in phenomenological models of linear quantum circuits. In particular, such a theory will enable the systematic realization of coherent/fully quantum linear stochastic controllers for quantum control, amongst other potential applications. We show how general linear dynamical quantum stochastic systems can be constructed by assembling an appropriate interconnection of one degree of freedom open quantum harmonic oscillators and, in the quantum optics setting, discuss how such a network of oscillators can be approximately synthesized or implemented in a systematic way from some linear and nonlinear quantum optical elements. An example is also provided to illustrate the theory.


Physical Review A | 2002

Continuous quantum error correction via quantum feedback control

Charlene Ahn; Andrew C. Doherty; Andrew J. Landahl

We describe a protocol for continuously protecting unknown quantum states from decoherence that incorporates design principles from both quantum error correction and quantum feedback control. Our protocol uses continuous measurements and Hamiltonian operations, which are weaker control tools than are typically assumed for quantum error correction. We develop a cost function appropriate for unknown quantum states and use it to optimize our state-estimate feedback. Using Monte Carlo simulations, we study our protocol for the three-qubit bit-flip code in detail and demonstrate that it can improve the fidelity of quantum states beyond what is achievable using quantum error correction when the time between quantum error-correction cycles is limited.


Science | 2006

Quantum Computation as Geometry

Michael A. Nielsen; Mark R. Dowling; Mile Gu Gu; Andrew C. Doherty

Quantum computers hold great promise for solving interesting computational problems, but it remains a challenge to find efficient quantum circuits that can perform these complicated tasks. Here we show that finding optimal quantum circuits is essentially equivalent to finding the shortest path between two points in a certain curved geometry. By recasting the problem of finding quantum circuits as a geometric problem, we open up the possibility of using the mathematical techniques of Riemannian geometry to suggest new quantum algorithms or to prove limitations on the power of quantum computers.


Physical Review Letters | 2005

Optimal Unravellings for Feedback Control in Linear Quantum Systems

Howard Mark Wiseman; Andrew C. Doherty

For quantum systems with linear dynamics in phase space much of classical feedback control theory applies. However, there are some questions that are sensible only for the quantum case: Given a fixed interaction between the system and the environment what is the optimal measurement on the environment for a particular control problem? We show that for a broad class of optimal (state-based) control problems (the stationary linear-quadratic-Gaussian class), this question is a semidefinite program. Moreover, the answer also applies to Markovian (current-based) feedback.


Physical Review A | 2001

Information, disturbance, and Hamiltonian quantum feedback control

Andrew C. Doherty; Kurt Jacobs; Gerard Jungman

We consider separating the problem of designing Hamiltonian quantum feedback control algorithms into a measurement (estimation) strategy and a feedback (control) strategy, and we consider optimizing desirable properties of each under the minimal constraint that the available strength of both is limited. This motivates concepts of information extraction and disturbance that are distinct from those usually considered in quantum information theory. Using these concepts, we identify an information tradeoff in quantum feedback control.


conference on computational complexity | 2008

The Quantum Moment Problem and Bounds on Entangled Multi-prover Games

Andrew C. Doherty; Yeong Cherng Liang; Ben Toner; Stephanie Wehner

We study the quantum moment problem: given a conditional probability distribution together with some polynomial constraints, does there exist a quantum state rho and a collection of measurement operators such that (i) the probability of obtaining a particular outcome when a particular measurement is performed on rho is specified by the conditional probability distribution, and (ii) the measurement operators satisfy the constraints. For example, the constraints might specify that some measurement operators must commute. We show that if an instance of the quantum moment problem is unsatisfiable, then there exists a certificate of a particular form proving this. Our proof is based on a recent result in algebraic geometry, the noncommutative Positivstellensatz of Helton and McCullough [Trans. Amer. Math. Soc., 356(9):3721, 2004]. A special case of the quantum moment problem is to compute the value of one-round multi-prover games with entangled provers. Under the conjecture that the provers need only share states in finite-dimensional Hilbert spaces, we prove that a hierarchy of semidefinite programs similar to the one given by Navascues, Pironioand Acin [Phys. Rev. Lett., 98:010401, 2007] converges to the entangled value of the game. Under this conjecture, it would follow that the languages recognized by a multi-prover interactive proof system where the provers share entanglement are recursive.

Collaboration


Dive into the Andrew C. Doherty's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Glen I. Harris

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Colless

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge