Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew C. Kemp is active.

Publication


Featured researches published by Andrew C. Kemp.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Temperature-driven global sea-level variability in the Common Era

Robert E. Kopp; Andrew C. Kemp; Klaus Bittermann; Benjamin P. Horton; Jeffrey P. Donnelly; W. Roland Gehrels; Carling C. Hay; Jerry X. Mitrovica; E. D. Morrow; Stefan Rahmstorf

Significance We present the first, to our knowledge, estimate of global sea-level (GSL) change over the last ∼3,000 years that is based upon statistical synthesis of a global database of regional sea-level reconstructions. GSL varied by ∼±8 cm over the pre-Industrial Common Era, with a notable decline over 1000–1400 CE coinciding with ∼0.2 °C of global cooling. The 20th century rise was extremely likely faster than during any of the 27 previous centuries. Semiempirical modeling indicates that, without global warming, GSL in the 20th century very likely would have risen by between −3 cm and +7 cm, rather than the ∼14 cm observed. Semiempirical 21st century projections largely reconcile differences between Intergovernmental Panel on Climate Change projections and semiempirical models. We assess the relationship between temperature and global sea-level (GSL) variability over the Common Era through a statistical metaanalysis of proxy relative sea-level reconstructions and tide-gauge data. GSL rose at 0.1 ± 0.1 mm/y (2σ) over 0–700 CE. A GSL fall of 0.2 ± 0.2 mm/y over 1000–1400 CE is associated with ∼0.2 °C global mean cooling. A significant GSL acceleration began in the 19th century and yielded a 20th century rise that is extremely likely (probability P≥0.95) faster than during any of the previous 27 centuries. A semiempirical model calibrated against the GSL reconstruction indicates that, in the absence of anthropogenic climate change, it is extremely likely (P=0.95) that 20th century GSL would have risen by less than 51% of the observed 13.8±1.5 cm. The new semiempirical model largely reconciles previous differences between semiempirical 21st century GSL projections and the process model-based projections summarized in the Intergovernmental Panel on Climate Change’s Fifth Assessment Report.


Earth’s Future | 2013

A geological perspective on sea‐level rise and its impacts along the U.S. mid‐Atlantic coast

Kenneth G. Miller; Robert E. Kopp; Benjamin P. Horton; James V. Browning; Andrew C. Kemp

We evaluate paleo-, historical, and future sea-level rise along the U.S. mid-Atlantic coast. The rate of relative sea-level rise in New Jersey decreased from 3.5 ± 1.0 mm/yr at 7.5–6.5 ka, to 2.2 ± 0.8 mm/yr at 5.5–4.5 ka to a minimum of 0.9 ± 0.4 mm/yr at 3.3–2.3 ka. Relative sea level rose at a rate of 1.6 ± 0.1 mm/yr from 2.2 to 1.2 ka (750 Common Era [CE]) and 1.4 ± 0.1 mm/yr from 800 to 1800 CE. Geological and tide-gauge data show that sea-level rise was more rapid throughout the region since the Industrial Revolution (19th century = 2.7 ± 0.4 mm/yr; 20th century = 3.8 ± 0.2 mm/yr). There is a 95% probability that the 20th century rate of sea-level rise was faster than it was in any century in the last 4.3 kyr. These records reflect global rise (∼1.7 ± 0.2 mm/yr since 1880 CE) and subsidence from glacio-isostatic adjustment (∼1.3 ± 0.4 mm/yr) at bedrock locations (e.g., New York City). At coastal plain locations, the rate of rise is 0.3–1.3 mm/yr higher due to groundwater withdrawal and compaction. We construct 21st century relative sea-level rise scenarios including global, regional, and local processes. We project a 22 cm rise at bedrock locations by 2030 (central scenario; low- and high-end scenarios range of 16–38 cm), 40 cm by 2050 (range 28–65 cm), and 96 cm by 2100 (range 66–168 cm), with coastal plain locations having higher rises (3, 5–6, and 10–12 cm higher, respectively). By 2050 CE in the central scenario, a storm with a 10 year recurrence interval will exceed all historic storms at Atlantic City. Summary An analysis of geological and historical sea-level records shows a significant rate of increase in sea-level rise since the nineteenth century. In New Jersey, it is extremely likely that sea-level rise in the twentieth century was faster than during any other century in the last 4.3 thousand years. Accounting for regional and local factors, the authors project sea-level rise in the mid-Atlantic U.S. most likely about 38–42′′ (96–106 cm) over the twentieth century, but possibly as high as 66–71′′ (168–180 cm).


Proceedings of the National Academy of Sciences of the United States of America | 2015

Increased threat of tropical cyclones and coastal flooding to New York City during the anthropogenic era.

Andra J. Reed; Michael E. Mann; Kerry A. Emanuel; Benjamin P. Horton; Andrew C. Kemp; Jeffrey P. Donnelly

Significance We combine proxy sea level records, downscaled tropical cyclone data sets, and storm surge models to investigate the impacts of rising sea levels and tropical cyclones on coastal inundation in New York City. The flood risk for New York City due to tropical cyclones and their resultant storm surges has increased significantly during the last millennium. Mean flood heights increased by >1.2 m from ∼A.D. 850 to A.D. 2005 due to rising relative sea levels. Additionally, there were increases in the types of tropical cyclones that produce the greatest surges for the region. Subsequently, the 500-y flood height return periods have fallen to ∼24.4 y throughout the millennium. In a changing climate, future inundation of the United States’ Atlantic coast will depend on both storm surges during tropical cyclones and the rising relative sea levels on which those surges occur. However, the observational record of tropical cyclones in the North Atlantic basin is too short (A.D. 1851 to present) to accurately assess long-term trends in storm activity. To overcome this limitation, we use proxy sea level records, and downscale three CMIP5 models to generate large synthetic tropical cyclone data sets for the North Atlantic basin; driving climate conditions span from A.D. 850 to A.D. 2005. We compare pre-anthropogenic era (A.D. 850–1800) and anthropogenic era (A.D.1970–2005) storm surge model results for New York City, exposing links between increased rates of sea level rise and storm flood heights. We find that mean flood heights increased by ∼1.24 m (due mainly to sea level rise) from ∼A.D. 850 to the anthropogenic era, a result that is significant at the 99% confidence level. Additionally, changes in tropical cyclone characteristics have led to increases in the extremes of the types of storms that create the largest storm surges for New York City. As a result, flood risk has greatly increased for the region; for example, the 500-y return period for a ∼2.25-m flood height during the pre-anthropogenic era has decreased to ∼24.4 y in the anthropogenic era. Our results indicate the impacts of climate change on coastal inundation, and call for advanced risk management strategies.


Geophysical Research Letters | 2014

Uplift and subsidence reveal a nonpersistent megathrust rupture boundary (Sitkinak Island, Alaska)

Richard W. Briggs; Simon E. Engelhart; Alan R. Nelson; Tina Dura; Andrew C. Kemp; Peter J. Haeussler; D. Reide Corbett; Stephen J. Angster; Lee-Ann Bradley

We report stratigraphic evidence of land-level change and tsunami inundation along the Alaska-Aleutian megathrust during prehistoric and historical earthquakes west of Kodiak Island. On Sitkinak Island, cores and tidal outcrops fringing a lagoon reveal five sharp lithologic contacts that record coseismic land-level change. Radiocarbon dates, 137Cs profiles, computerized tomography scans, and microfossil assemblages are consistent with rapid uplift circa 290–0, 520–300, and 1050–790 cal yr B.P. and subsidence in A.D. 1964 and circa 640–510 cal yr B.P. Radiocarbon, 137Cs, and 210Pb ages bracketing a sand bed traced 1.5 km inland and evidence for sudden uplift are consistent with Russian accounts of an earthquake and tsunami in A.D. 1788. The mixed uplift and subsidence record suggests that Sitkinak Island sits above a nonpersistent boundary near the southwestern limit of the A.D. 1964 Mw 9.2 megathrust rupture.


Climatic Change | 2015

Past and future sea-level rise along the coast of North Carolina, USA

Robert E. Kopp; Benjamin P. Horton; Andrew C. Kemp; Claudia Tebaldi

We evaluate relative sea level (RSL) trajectories for North Carolina, USA, in the context of tide-gauge measurements and geological sea-level reconstructions spanning the last ~11,000 years. RSL rise was fastest (~7 mm/yr) during the early Holocene and slowed over time with the end of the deglaciation. During the pre-Industrial Common Era (i.e., 0–1800 CE), RSL rise (~0.7 to 1.1 mm/yr) was driven primarily by glacio-isostatic adjustment, though dampened by tectonic uplift along the Cape Fear Arch. Ocean/atmosphere dynamics caused centennial variability of up to ~0.6 mm/yr around the long-term rate. It is extremely likely (probability P=0.95) that 20th century RSL rise at Sand Point, NC, (2.8 ± 0.5 mm/yr) was faster than during any other century in at least 2,900 years. Projections based on a fusion of process models, statistical models, expert elicitation, and expert assessment indicate that RSL at Wilmington, NC, is very likely (P=0.90) to rise by 42–132 cm between 2000 and 2100 under the high-emissions RCP 8.5 pathway. Under all emission pathways, 21st century RSL rise is very likely (P>0.90) to be faster than during the 20th century. Due to RSL rise, under RCP 8.5, the current ‘1-in-100 year’ flood is expected at Wilmington in ~30 of the 50 years between 2050-2100.


The Holocene | 2017

Relative Sea-Level Trends in New York City During the Past 1500 Years

Andrew C. Kemp; Troy D. Hill; Christopher H. Vane; Niamh Cahill; Philip Orton; Stefan A. Talke; Andrew C. Parnell; Kelsey Sanborn; Ellen K. Hartig

New York City (NYC) is threatened by 21st-century relative sea-level (RSL) rise because it will experience a trend that exceeds the global mean and has high concentrations of low-lying infrastructure and socioeconomic activity. To provide a long-term context for anticipated trends, we reconstructed RSL change during the past ~1500 years using a core of salt-marsh sediment from Pelham Bay in The Bronx. Foraminifera and bulk-sediment δ13C values were used as sea-level indicators. The history of sediment accumulation was established by radiocarbon dating and recognition of pollution and land-use trends of known age in down-core elemental, isotopic, and pollen profiles. The reconstruction was generated within a Bayesian hierarchical model to accommodate multiple proxies and to provide a unified statistical framework for quantifying uncertainty. We show that RSL in NYC rose by ~1.70 m since ~575 CE (including ~0.38 m since 1850 CE). The rate of RSL rise increased markedly at 1812–1913 CE from ~1.0 to ~2.5 mm/yr, which coincides with other reconstructions along the US Atlantic coast. We investigated the possible influence of tidal-range change in Long Island Sound on our reconstruction using a regional tidal model, and we demonstrate that this effect was likely small. However, future tidal-range change could exacerbate the impacts of RSL rise in communities bordering Long Island Sound. The current rate of RSL rise is the fastest that NYC has experienced for >1500 years, and its ongoing acceleration suggests that projections of 21st-century local RSL rise will be realized.


Diatom Research | 2016

Relationships between diatoms and tidal environments in Oregon and Washington, USA

Yuki Sawai; Benjamin P. Horton; Andrew C. Kemp; Andrea D. Hawkes; Tamostsu Nagumo; Alan R. Nelson

A new regional dataset comprising 425 intertidal diatom taxa from 175 samples from 11 ecologically diverse Oregon and Washington estuaries illustrates the importance of compiling a large modern dataset from a range of sites. Cluster analyses and detrended correspondence analysis of the diatom assemblages identify distinct vertical zones within supratidal, intertidal and subtidal environments at six of the 11 study sites, but the abundance of some of the most common species varies widely among and within sites. Canonical correspondence analysis of the regional dataset shows relationships between diatom species and tidal exposure, salinity and substratum (grain size and organic content). Correspondence analyses of local datasets show higher values of explained variation than the analysis of the combined regional dataset. Our results emphasize that studies of the autecology of diatom species require many samples from a range of modern environments to adequately characterize species–environment relationships.


Coastal Management | 2015

Science Needs for Sea-Level Adaptation Planning: Comparisons among Three U.S. Atlantic Coastal Regions

Kenyon C. Lindeman; Lauren E. Dame; Christine B. Avenarius; Benjamin P. Horton; Jeffrey P. Donnelly; D. Reide Corbett; Andrew C. Kemp; Phil Lane; Michael E. Mann; W. Richard Peltier

To identify priority information needs for sea-level rise planning, we conducted workshops in Florida, North Carolina, and Massachusetts in the summer of 2012. Attendees represented professionals from five stakeholder groups: federal and state governments, local governments, universities, businesses, and nongovernmental organizations. Over 100 people attended and 96 participated in breakout groups. Text analysis was used to organize and extract most frequently occurring content from 16 total breakout groups. The most frequent key words/phrases were identified among priority topics within five themes: analytic tools, communications, land use, ecosystem management, and economics. Diverse technical and communication tools were identified to help effectively plan for change. In many communities, planning has not formally begun. Attendees sought advanced prediction tools yet simple messaging for decision-makers facing politically challenging planning questions. High frequency key words/phrases involved fine spatial scales and temporal scales of less than 50 years. Many needs involved communications and the phrase “simple messaging” appeared with the highest frequency. There was some evidence of geographic variation among regions. North Carolina breakout groups had a higher frequency of key words/phrases involving land use. The results reflect challenges and tractable opportunities for planning beyond current, geophysically brief, time scales (e.g., election cycles and mortgage periods).


Marine Pollution Bulletin | 2017

PAH, PCB, TPH and mercury in surface sediments of the Delaware River Estuary and Delmarva Peninsula, USA

A.W. Kim; Christopher H. Vane; Vicky Moss-Hayes; Simon E. Engelhart; Andrew C. Kemp

Surface sediment concentrations of polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB), total petroleum hydrocarbons (TPH) and mercury, were compared from two areas with contrasting land use history, the industrial Delaware Estuary and the rural Delmarva Peninsula (USA). TPH in the Delaware (38-616mg/kg) and saturate/aromatic fractions suggested petroleum/industrial sources compared to biogenic sources in the Delmarva coastal control (<34-159mg/kg). Within the Delaware the ∑PAH18 ranged from 3749 to 22,324μg/kg with isomeric ratios indicative of petroleum combustion source/s, conversely, those in the Delmarva (5-2139μg/kg) also yielded relatively higher perylene that were consistent with natural background levels derived from vegetation/coal combustion source/s. ∑PCB(tri-hepta) concentrations in the Delmarva (0.6-6.5μg/kg) were less than the threshold effect concentration (TEC), whereas the Delaware had received much higher PCB loading (18.1-136.8μg/kg) as evidenced by a significantly higher amounts in some samples (>TEC).


Proceedings of the National Academy of Sciences of the United States of America | 2018

River-discharge effects on United States Atlantic and Gulf coast sea-level changes

Christopher G. Piecuch; Klaus Bittermann; Andrew C. Kemp; Rui M. Ponte; Christopher M. Little; Simon E. Engelhart; Steven J. Lentz

Significance River discharge exerts an important influence on coastal ocean circulation but has been overlooked as a driver of historical coastal sea-level change and future coastal flood risk. We explore the relation between observed river discharge and sea level on the United States Atlantic and Gulf coasts over interannual and longer periods. We formulate a theory that predicts the observed correspondence between river discharge and sea level, demonstrating a causal relation between the two variables. Our results highlight a significant but overlooked driver of coastal sea level, indicating the need for (1) improved resolution in remote sensing and modeling of the coastal zone and (2) inclusion of realistic river runoff variability in climate models. Identifying physical processes responsible for historical coastal sea-level changes is important for anticipating future impacts. Recent studies sought to understand the drivers of interannual to multidecadal sea-level changes on the United States Atlantic and Gulf coasts. Ocean dynamics, terrestrial water storage, vertical land motion, and melting of land ice were highlighted as important mechanisms of sea-level change along this densely populated coast on these time scales. While known to exert an important control on coastal ocean circulation, variable river discharge has been absent from recent discussions of drivers of sea-level change. We update calculations from the 1970s, comparing annual river-discharge and coastal sea-level data along the Gulf of Maine, Mid-Atlantic Bight, South Atlantic Bight, and Gulf of Mexico during 1910–2017. We show that river-discharge and sea-level changes are significantly correlated (p<0.01), such that sea level rises between 0.01 and 0.08 cm for a 1 km3 annual river-discharge increase, depending on region. We formulate a theory that describes the relation between river-discharge and halosteric sea-level changes (i.e., changes in sea level related to salinity) as a function of river discharge, Earth’s rotation, and density stratification. This theory correctly predicts the order of observed increment sea-level change per unit river-discharge anomaly, suggesting a causal relation. Our results have implications for remote sensing, climate modeling, interpreting Common Era proxy sea-level reconstructions, and projecting coastal flood risk.

Collaboration


Dive into the Andrew C. Kemp's collaboration.

Top Co-Authors

Avatar

Benjamin P. Horton

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niamh Cahill

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea D. Hawkes

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jeffrey P. Donnelly

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen J. Culver

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Christopher E. Bernhardt

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge