Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew C. McCreary is active.

Publication


Featured researches published by Andrew C. McCreary.


Brain Research | 2012

The effects of cannabinoid CB1, CB2 and vanilloid TRPV1 receptor antagonists on cocaine addictive behavior in rats

Przemysław Adamczyk; Joanna Miszkiel; Andrew C. McCreary; Małgorzata Filip; Mariusz Papp; Edmund Przegaliński

There is evidence that indicates that tonic activation of cannabinoid CB1 receptors plays a role in extinction/reinstatement of cocaine seeking-behavior but is not involved in the maintenance of cocaine self-administration. To further explore the importance of other endocannabinoid-related receptors in an animal model of cocaine addiction, the present paper examines cannabinoid CB2 receptor antagonist N-((1S)-endo-1,3,3-trimethylbicyclo(2.2.1)heptan-2-yl)-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) and the transient receptor potential vanilloid type-1 (TRPV1) receptor antagonist N-(3-methoxyphenyl)-4-chlorocinnamide (SB366791) on intravenous (i.v.) cocaine self-administration and extinction/reinstatement of cocaine-seeking behavior in rats. For comparison and reference purposes, the effect of the cannabinoid CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) was also examined. Moreover, for comparison effects of those drugs on operant lever responding for artificial (cocaine) vs. natural (food) reward, food self-administration was also evaluated. Our findings show that AM251 (1-3mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.3-1mg/kg) did not affect cocaine self-administration. However, AM251 (0.1-1mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.1-1mg/kg) decreased cocaine-induced reinstatement of cocaine-seeking behavior, and AM251 (0.3-1mg/kg) decreased cue-induced reinstatement. Moreover, AM251 (3mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.1-1mg/kg) slightly decreased food self-administration behavior, but only AM251 (3mg/kg) reduced food reward. In conclusion, our results indicate for the first time, that tonic activation of CB2 or TRPV1 receptors is involved in cocaine-induced reinstatement of cocaine-seeking behavior, but their activity is not necessary for the rewarding effect of this psychostimulant. In contrast to CB1 receptors, neither CB2 nor TRPV1 receptors play a role in cue-induced reinstatement of cocaine-seeking behavior.


Parkinsonism & Related Disorders | 2012

Striatal plasticity in Parkinson's disease and L-dopa induced dyskinesia.

Mahmoud M. Iravani; Andrew C. McCreary; Peter Jenner

Striatal function adapts to the loss of nigrostriatal dopaminergic input in Parkinsons disease (PD) to initially maintain voluntary movement, but subsequently changes in response to drug treatment leading to the onset of motor complications, notably dyskinesia. Alterations in presynaptic dopaminergic function coupled to changes in the response of post-synaptic dopaminergic receptors causing alterations in striatal output underlie attempts at compensation and the control of movement in early PD. However, eventually compensation fails and persistent changes in striatal function ensue that involve morphological, biochemical and electrophysiological change. Key alterations occur in cholinergic and glutamatergic transmission in the striatum and there are changes in motor programming controlled by events involving LTP/LTD. Dopamine replacement therapy with L-dopa modifies altered striatal function and restores motor function but non-physiological dopamine receptor stimulation leads to altered signalling through D1 and D2 receptor systems and changes in striatal function causing abnormalities of LTP/LTD mediated through glutamatergic/nitric oxide (NO) mechanisms. These lead to the onset of dyskinesia and underlie the priming process that characterise dyskinesia and its persistence.


Neuropsychopharmacology | 2007

SLV313 (1-(2,3-dihydro-benzo[1,4]dioxin-5-yl)-4- [5-(4-fluoro-phenyl)-pyridin-3-ylmethyl]-piperazine monohydrochloride): a novel dopamine D2 receptor antagonist and 5-HT1A receptor agonist potential antipsychotic drug.

Andrew C. McCreary; Jeffrey C. Glennon; Charles R. Ashby; Herbert Y. Meltzer; Zhu Li; Jan Hendrik Reinders; Mayke B. Hesselink; S.K. Long; A.H.J. Herremans; Herman H. van Stuivenberg; Rolf W. Feenstra; Chris G. Kruse

Combined dopamine D2 receptor antagonism and serotonin (5-HT)1A receptor agonism may improve efficacy and alleviate some side effects associated with classical antipsychotics. The present study describes the in vitro and in vivo characterization of 1-(2,3-dihydro-benzo[1,4]dioxin-5-yl)-4-[5-(4-fluoro-phenyl)-pyridin-3-ylmethyl]-piperazine monohydrochloride (SLV313), a D2/3 antagonist and 5-HT1A agonist. SLV313 possessed high affinity at human recombinant D2, D3, D4, 5-HT2B, and 5-HT1A receptors, moderate affinity at 5-HT7 and weak affinity at 5-HT2A receptors, with little-no affinity at 5-HT4, 5-HT6, α1, and α2 (rat), H1 (guinea pig), M1, M4, 5-HT3 receptors, and the 5-HT transporter. SLV313 had full agonist activity at cloned h5-HT1A receptors (pEC50=9.0) and full antagonist activity at hD2 (pA2=9.3) and hD3 (pA2=8.9) receptors. In vivo, SLV313 antagonized apomorphine-induced climbing and induced 5-HT1A syndrome behaviors and hypothermia, the latter behaviors being antagonized by the 5-HT1A antagonist WAY100635. In a drug discrimination procedure SLV313 induced full generalization to the training drug flesinoxan and was also antagonized by WAY100635. In the nucleus accumbens SLV313 reduced extracellular 5-HT and increased dopamine levels in the same dose range. Acetylcholine and dopamine were elevated in the hippocampus and mPFCx, the latter antagonized by WAY100635, suggesting possible 5-HT1A-dependent efficacy for the treatment of cognitive and attentional processes. SLV313 did not possess cataleptogenic potential (up to 60 mg/kg p.o.). The number of spontaneously active dopamine cells in the ventral tegmental area was reduced by SLV313 and clozapine, while no such changes were seen in the substantia nigra zona compacta following chronic administration. These results suggest that SLV313 is a full 5-HT1A receptor agonist and full D2/3 receptor antagonist possessing characteristics of an atypical antipsychotic, representing a potential novel treatment for schizophrenia.


Neuropharmacology | 2010

Effects of serotonin (5-HT)2 receptor ligands on depression-like behavior during nicotine withdrawal.

Magdalena Zaniewska; Andrew C. McCreary; Karolina Wydra; Małgorzata Filip

A pronounced withdrawal syndrome including depressed mood prevents cigarette smoking cessation. We tested if blockade or activation of serotonin (5-HT)(2) receptors affected the time of immobility (as an indirect measure of depression-like behavior) in naïve animals and in those withdrawn from chronic nicotine in the forced swim test (FST). The antidepressant imipramine was used as a control. In the FST, the selective 5-HT(2A) receptor antagonist M100,907 (1-2 mg/kg, but not 0.5 mg/kg), the selective 5-HT(2C) receptor antagonist SB 242,084 (0.3-1 mg/kg, but not 0.1 mg/kg), the 5-HT(2C) receptor agonists Ro 60-0175 (10 mg/kg, but not 3 mg/kg) and WAY 163,909 (1.5-10 mg/kg, but not 0.75 mg/kg) as well as imipramine (30 mg/kg, but not 15 mg/kg) decreased the immobility time while the non-selective 5-HT(2) receptor agonist DOI (0.1-1 mg/kg) was inactive in naïve rats. We found an increase in immobility time in rats that were withdrawn from nicotine exposure after 5 days of chronic nicotine treatment. This effect increased from day 1 until day 10 following withdrawal of nicotine, with maximal withdrawal effects on day 3. M100,907 (1 mg/kg), SB 242,084 (0.3 mg/kg), Ro 60-0175 (3 mg/kg), WAY 163,909 (0.75-1.5 mg/kg) and imipramine (15-30 mg/kg) shortened the immobility time in rats that had been removed from nicotine exposure for 3 days. Locomotor activity studies indicated that the effects of SB 242,084 might have been non-specific, as we noticed enhanced basal locomotion in naïve rats. This data set demonstrates that 5-HT(2A) receptor antagonist and 5-HT(2C) receptor agonists exhibited effects similar to antidepressant drugs and abolished the depression-like effects in nicotine-withdrawn rats. These drugs should be considered as adjuncts to smoking cessation therapy, to ameliorate abstinence-induced depressive symptoms.


Neuropharmacology | 2008

Serotonergic approaches in the development of novel antipsychotics

Caitlin A. Jones; Andrew C. McCreary

Schizophrenia is a chronic, debilitating neuropsychological disease characterised by positive, negative, and cognitive deficits. In recent years, new pharmacological treatment strategies have been developed to treat the sequalae of schizophrenia based upon more selective receptor activity profiles in the hope that treatment efficacy can be increased without inducing the side-effect profiles seen with current available therapies. One such strategy involves the development of combined (partial) 5-HT(1A) agonists and D(2) receptor (partial) antagonists such as bifeprunox, SLV313, F15063 and SSR-181507 in an attempt to increase therapeutic efficacy of all symptom domains whilst alleviating adverse side effects. Other novel drugs including SLV310 and SLV314 combine selective serotonin reuptake inhibition (SSRI) functionality with D(2) receptor antagonism in an attempt to not only improve schizophrenic symptoms, but to also relieve other affective disorders intricately linked with the disorder. The main scope of this review will evaluate the major preclinical and clinical pharmacological findings concerning the aforementioned strategies and pharmacological agents, and compare their therapeutic potential with currently available antipsychotics; however, recent developments at other emerging serotonergic targets such as 5-HT(2C), 5-HT(6) and 5-HT(7) receptors will also be considered.


Movement Disorders | 2008

The nociceptin/orphanin FQ (NOP) receptor antagonist J-113397 enhances the effects of levodopa in the MPTP-lesioned nonhuman primate model of Parkinson's disease.

Naomi P. Visanji; Rob M.A. de Bie Md; Tom H. Johnston; Andrew C. McCreary; Jonathan M. Brotchie; Susan H. Fox

The anti‐parkinsonian and levodopa‐sparing potential of the nociceptin/orphanin FQ receptor (NOP) antagonist J‐113397 has been demonstrated in rodent models of Parkinsons disease. Here, we describe the levodopa‐sparing potential of J‐113397 in MPTP‐lesioned marmosets. Coadministration of J‐113397 (30 mg/kg) with a sub‐therapeutic dose of levodopa (12.5 mg/kg) produced an anti‐parkinsonian action equivalent to that of a therapeutic dose of levodopa. However, these effects were accompanied by an equivalent level of dyskinesia. The actions of NOP antagonists seen in rodents translate to nonhuman primates. However, the present study raises the possibility that these levodopa‐sparing benefits may be offset by a propensity to exacerbate dyskinesia.


Neuropharmacology | 2004

5-HT2 receptors differentially modulate dopamine-mediated auto-inhibition in A9 and A10 midbrain areas of the rat.

Johanna E. Olijslagers; Taco R. Werkman; Andrew C. McCreary; R.J. Siarey; Chris G. Kruse; Wytse J. Wadman

5-HT (20 microM) enhanced dopamine (DA) D2-like receptor mediated reduction of the firing rate of DA neurons in the substantia nigra pars compacta (A9) and ventral tegmental area (A10) in a rat midbrain slice preparation. Quinpirole (30 nM) induced a mean reduction of the firing rate in A9 and A10 DA neurons to 64 +/- 4%, respectively, 71 +/- 5% of the baseline value. Bath application of 5-HT in the presence of quinpirole further reduced the firing rate to 37 +/- 7% in A9 and 33 +/- 13% in A10. The 5-HT2 receptor agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI, 500 nM) enhanced quinpirole-induced reduction of firing rate of A10 DA neurons, but not of A9 DA neurons, suggesting that different 5-HT receptor subtypes are involved in modulation of dopamine D2-like receptor mediated inhibition in the two regions. The selective 5-HT2A receptor antagonist MDL100907 and the selective 5-HT2C receptor antagonist SB242084 (50 and 500 nM) both abolished the enhancement of quinpirole-induced reduction by either 5-HT or DOI, suggesting the involvement of direct and indirect (possibly via interneurons) modulation pathways in A10. The involvement of 5-HT and specific 5-HT2 receptors in augmentation of auto-inhibition in A10 could have important implications for our understanding of the mechanism of atypical antipsychotic drug action.


Synapse | 2009

Interactions of serotonin (5-HT)2 receptor-targeting ligands and nicotine: Locomotor activity studies in rats

Magdalena Zaniewska; Andrew C. McCreary; Małgorzata Filip

Male Wistar rats were used to verify the hypothesis that serotonin (5‐HT)2A or 5‐HT2C receptors may control the locomotor effects evoked by nicotine (0.4mg/kg). The 5‐HT2A receptor antagonist (M100,907), the 5‐HT2A receptor agonist (DOI), the 5‐HT2C receptor antagonist (SB 242,084), and the 5‐HT2C receptor agonists (Ro 60‐0175 and WAY 163,909) were used. M100,907 (0.5–2mg/kg) did not alter, while DOI (1 mg/kg) enhanced the nicotine‐induced hyperlocomotion. The effect of DOI was antagonized by M100,907 (1 mg/kg). SB 242,084 (0.25–1 mg/kg) augmented, while Ro 60‐0175 (1 and 3 mg/kg) and WAY 163,909 (1.5 mg/kg) decreased the overall effect of acute nicotine; effects of Ro 60‐0175 and WAY 163,909 were attenuated by SB 242,084 (0.125 mg/kg). In another set of experiments, M100,907 (2 mg/kg) on Day 10 attenuated, while DOI (0.1–1 mg/kg) enhanced the nicotine‐evoked conditioned hyperlocomotion in rats repeatedly (Days 1–5) treated with nicotine in experimental chambers. SB 242,084 (0.125 or 1 mg/kg) did not change, while Ro 60‐0175 (1 mg/kg) or WAY 163,909 (1.5 mg/kg) decreased the expression of nicotine‐induced conditioned hyperactivity. Only DOI (0.3 and 1 mg/kg) and SB 242,084 (1 mg/kg) enhanced the basal locomotion. The present data indicate that 5‐HT2A receptors are significant for the expression of nicotine‐evoked conditioned hyperactivity. Conversely, 5‐HT2C receptors play a pivotal role in the acute effects of nicotine. Pharmacological stimulation of 5‐HT2A receptors enhances the conditioned hyperlocomotion, while activation of 5‐HT2C receptors decreases both the response to acute nicotine and conditioned hyperactivity. Synapse 63:653–661, 2009.


Bioorganic & Medicinal Chemistry Letters | 2003

SLV310, a novel, potential antipsychotic, combining potent dopamine D2 receptor antagonism with serotonin reuptake inhibition

Rolf van Hes; Pieter Smid; Cees Stroomer; Koos Tipker; Martin Tulp; Jan van der Heyden; Andrew C. McCreary; Mayke B. Hesselink; Chris G. Kruse

In this paper, SLV310 is presented as a novel, potential antipsychotic displaying the interesting combination of potent dopamine D(2) receptor antagonism and serotonin reuptake receptor inhibition in one molecule. As such, SLV310 could be useful in treating a broad range of symptoms in schizophrenia. This paper describes the structure-activity relationship in a series of compounds leading to SLV310 (6b, 2-[4-[4-(5-fluoro-1H-indol-3-yl)-3,6-dihydro-2H-pyridin-1-yl]-butyl]-phthalimide) together with pharmacological data showing the unique profile of this compound.


Behavioural Brain Research | 2011

Serotonergic involvement in methamphetamine-induced locomotor activity: a detailed pharmacological study.

Emily Steed; Caitlin A. Jones; Andrew C. McCreary

The mechanism by which the psychostimulant methamphetamine (METH) increases locomotor activity may be attributable to indirect activation of serotonin (5-HT) and dopamine (DA) receptors. In the present study, the ability of the serotonin reuptake inhibitor fluvoxamine, 5-HT(1A), 5-HT(1B), 5-HT(2A) and 5-HT(2C) receptor antagonists WAY100635, GR127935, M100907 and SB242084, and the 5-HT(2C) receptor agonists WAY163909 and Ro 60-0175 or the 5-HT synthesis inhibitor para-chlorophenylalanine (pCPA) to alter METH-induced hyperactivity was analysed. Further, for comparative purposes, the involvement of the DA D(1) and D(2) receptor antagonists SCH23390 and haloperidol, D(2) partial agonists terguride, (-)3PPP and aripiprazole and finally clozapine were assessed. Doses of pCPA that attenuated 5-HT levels reduced METH activity. The 5-HT(1B) antagonist GR127935 had no effect on METH-induced locomotor activity but blocked that induced by MDMA. The 5-HT(1A) antagonist WAY100635 reduced activity but this did not reach significance. In contrast, M100907 (minimal effective dose; MED=0.125 mg/kg), WAY163909 (MED=3mg/kg), Ro 60-0175 (MED=3mg/kg), haloperidol (MED=0.1mg/kg), clozapine (MED=5mg/kg), aripiprazole (MED=1mg/kg), (-)3PPP (MED=3mg/kg), terguride (MED=0.2mg/kg) and SCH23390 (MED=0.001325 mg/kg) attenuated METH-induced locomotor activity. Administration of 20mg/kg fluvoxamine attenuated, while SB242084 (MED=0.25mg/kg) potentiated METH-induced activity. These results contribute significantly to the understanding of the mechanism of action of this psychostimulant and suggest for the first time, that METH-induced locomotor stimulation is modulated by 5-HT(2A) and 5-HT(2C) receptors, but demonstrate that 5-HT(1B) receptors are not directly involved. The involvement of the dopaminergic system was also demonstrated.

Collaboration


Dive into the Andrew C. McCreary's collaboration.

Researchain Logo
Decentralizing Knowledge