Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew C. Wood is active.

Publication


Featured researches published by Andrew C. Wood.


Nature Genetics | 2013

The genetic landscape of high-risk neuroblastoma

Trevor J. Pugh; Olena Morozova; Edward F. Attiyeh; Shahab Asgharzadeh; Jun S. Wei; Daniel Auclair; Scott L. Carter; Kristian Cibulskis; Megan Hanna; Adam Kiezun; Jaegil Kim; Michael S. Lawrence; Lee Lichenstein; Aaron McKenna; Chandra Sekhar Pedamallu; Alex H. Ramos; Erica Shefler; Andrey Sivachenko; Carrie Sougnez; Chip Stewart; Adrian Ally; Inanc Birol; Readman Chiu; Richard Corbett; Martin Hirst; Shaun D. Jackman; Baljit Kamoh; Alireza Hadj Khodabakshi; Martin Krzywinski; Allan Lo

Neuroblastoma is a malignancy of the developing sympathetic nervous system that often presents with widespread metastatic disease, resulting in survival rates of less than 50%. To determine the spectrum of somatic mutation in high-risk neuroblastoma, we studied 240 affected individuals (cases) using a combination of whole-exome, genome and transcriptome sequencing as part of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative. Here we report a low median exonic mutation frequency of 0.60 per Mb (0.48 nonsilent) and notably few recurrently mutated genes in these tumors. Genes with significant somatic mutation frequencies included ALK (9.2% of cases), PTPN11 (2.9%), ATRX (2.5%, and an additional 7.1% had focal deletions), MYCN (1.7%, causing a recurrent p.Pro44Leu alteration) and NRAS (0.83%). Rare, potentially pathogenic germline variants were significantly enriched in ALK, CHEK2, PINK1 and BARD1. The relative paucity of recurrent somatic mutations in neuroblastoma challenges current therapeutic strategies that rely on frequently altered oncogenic drivers.


Nature | 2009

Copy number variation at 1q21.1 associated with neuroblastoma

Sharon J. Diskin; Cuiping Hou; Joseph T. Glessner; Edward F. Attiyeh; Marci Laudenslager; Kristopher R. Bosse; Kristina A. Cole; Yael P. Mosse; Andrew C. Wood; Jill Lynch; Katlyn Pecor; Maura Diamond; Cynthia Winter; Kai Wang; Cecilia Kim; Elizabeth A. Geiger; Patrick McGrady; Alexandra I. F. Blakemore; Wendy B. London; Tamim H. Shaikh; Jonathan P. Bradfield; Struan F. A. Grant; Hongzhe Li; Marcella Devoto; Eric R. Rappaport; Hakon Hakonarson; John M. Maris

Common copy number variations (CNVs) represent a significant source of genetic diversity, yet their influence on phenotypic variability, including disease susceptibility, remains poorly understood. To address this problem in human cancer, we performed a genome-wide association study of CNVs in the childhood cancer neuroblastoma, a disease in which single nucleotide polymorphism variations are known to influence susceptibility. We first genotyped 846 Caucasian neuroblastoma patients and 803 healthy Caucasian controls at ∼550,000 single nucleotide polymorphisms, and performed a CNV-based test for association. We then replicated significant observations in two independent sample sets comprised of a total of 595 cases and 3,357 controls. Here we describe the identification of a common CNV at chromosome 1q21.1 associated with neuroblastoma in the discovery set, which was confirmed in both replication sets. This CNV was validated by quantitative polymerase chain reaction, fluorescent in situ hybridization and analysis of matched tumour specimens, and was shown to be heritable in an independent set of 713 cancer-free parent–offspring trios. We identified a previously unknown transcript within the CNV that showed high sequence similarity to several neuroblastoma breakpoint family (NBPF) genes and represents a new member of this gene family (NBPF23). This transcript was preferentially expressed in fetal brain and fetal sympathetic nervous tissues, and the expression level was strictly correlated with CNV state in neuroblastoma cells. These data demonstrate that inherited copy number variation at 1q21.1 is associated with neuroblastoma and implicate a previously unknown neuroblastoma breakpoint family gene in early tumorigenesis of this childhood cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2011

RNAi screen of the protein kinome identifies checkpoint kinase 1 (CHK1) as a therapeutic target in neuroblastoma

Kristina A. Cole; Jonathan Huggins; Michael P. LaQuaglia; Chase Hulderman; Mike R. Russell; Kristopher R. Bosse; Sharon J. Diskin; Edward F. Attiyeh; Rachel Sennett; Geoffrey Norris; Marci Laudenslager; Andrew C. Wood; Patrick A. Mayes; Jayanti Jagannathan; Cynthia Winter; Yael P. Mosse; John M. Maris

Neuroblastoma is a childhood cancer that is often fatal despite intense multimodality therapy. In an effort to identify therapeutic targets for this disease, we performed a comprehensive loss-of-function screen of the protein kinome. Thirty kinases showed significant cellular cytotoxicity when depleted, with loss of the cell cycle checkpoint kinase 1 (CHK1/CHEK1) being the most potent. CHK1 mRNA expression was higher in MYC–Neuroblastoma-related (MYCN)–amplified (P < 0.0001) and high-risk (P = 0.03) tumors. Western blotting revealed that CHK1 was constitutively phosphorylated at the ataxia telangiectasia response kinase target site Ser345 and the autophosphorylation site Ser296 in neuroblastoma cell lines. This pattern was also seen in six of eight high-risk primary tumors but not in control nonneuroblastoma cell lines or in seven of eight low-risk primary tumors. Neuroblastoma cells were sensitive to the two CHK1 inhibitors SB21807 and TCS2312, with median IC50 values of 564 nM and 548 nM, respectively. In contrast, the control lines had high micromolar IC50 values, indicating a strong correlation between CHK1 phosphorylation and CHK1 inhibitor sensitivity (P = 0.0004). Furthermore, cell cycle analysis revealed that CHK1 inhibition in neuroblastoma cells caused apoptosis during S-phase, consistent with its role in replication fork progression. CHK1 inhibitor sensitivity correlated with total MYC(N) protein levels, and inducing MYCN in retinal pigmented epithelial cells resulted in CHK1 phosphorylation, which caused growth inhibition when inhibited. These data show the power of a functional RNAi screen to identify tractable therapeutical targets in neuroblastoma and support CHK1 inhibition strategies in this disease.


Science Translational Medicine | 2011

Differential Inhibitor Sensitivity of Anaplastic Lymphoma Kinase Variants Found in Neuroblastoma

Scott C. Bresler; Andrew C. Wood; Elizabeth Haglund; Joshua Courtright; Lili T. Belcastro; Jefferson S. Plegaria; Kristina A. Cole; Yana Toporovskaya; Huaqing Zhao; Erica L. Carpenter; James G. Christensen; John M. Maris; Mark A. Lemmon; Yael P. Mosse

Neuroblastoma sensitivity to crizotinib depends on the ATP-binding affinity of ALK variants, suggesting that higher doses may overcome resistance. A Boost for Neuroblastoma Therapy Neuroblastoma, a malignancy of the autonomic nervous system, is the most common cancer in children under 1 year of age. Nearly 10% of spontaneous neuroblastoma patients house mutations in the gene that encodes anaplastic lymphoma kinase (ALK). The U.S. Food and Drug Administration recently approved crizotinib—a small-molecule inhibitor of ALK’s tyrosine kinase activity and thus its cell signaling function—for the treatment of non–small cell lung carcinomas, and the drug is in early clinical trials for neuroblastoma. However, tumors with certain ALK mutations do not appear to respond to crizotinib. Bresler et al. now dissect the molecular mechanisms behind the differential crizotinib sensitivities of individual ALK mutations. Crizotinib inhibits kinase activity by competing for binding with the enzyme’s adenosine triphosphate (ATP) substrate. The authors used human neuroblastoma cell lines and xenografts in mice to show that cancers with the two most common ALK mutations, F1174L and R1275Q, are unresponsive to and effectively inhibited by crizotinib therapy, respectively. This reduced sensitivity was caused by a heightened ATP-binding affinity in F1174L-mutated ALK. These observations suggest that either increasing the dose of crizotinib or engineering higher-affinity inhibitors should improve therapy for patients with this common ALK mutation. Although careful toxicity studies need to be performed to find the maximum tolerated dose in the pediatric population, this mechanistic study provides more than a baby step toward improving crizotinib therapy in the clinic. Activating mutations in the anaplastic lymphoma kinase (ALK) gene were recently discovered in neuroblastoma, a cancer of the developing autonomic nervous system that is the most commonly diagnosed malignancy in the first year of life. The most frequent ALK mutations in neuroblastoma cause amino acid substitutions (F1174L and R1275Q) in the intracellular tyrosine kinase domain of the intact ALK receptor. Identification of ALK as an oncogenic driver in neuroblastoma suggests that crizotinib (PF-02341066), a dual-specific inhibitor of the ALK and Met tyrosine kinases, will be useful in treating this malignancy. Here, we assessed the ability of crizotinib to inhibit proliferation of neuroblastoma cell lines and xenografts expressing mutated or wild-type ALK. Crizotinib inhibited proliferation of cell lines expressing either R1275Q-mutated ALK or amplified wild-type ALK. In contrast, cell lines harboring F1174L-mutated ALK were relatively resistant to crizotinib. Biochemical analyses revealed that this reduced susceptibility of F1174L-mutated ALK to crizotinib inhibition resulted from an increased adenosine triphosphate–binding affinity (as also seen in acquired resistance to epidermal growth factor receptor inhibitors). Thus, this effect should be surmountable with higher doses of crizotinib and/or with higher-affinity inhibitors.


Clinical Cancer Research | 2013

Dual CDK4/CDK6 Inhibition Induces Cell-Cycle Arrest and Senescence in Neuroblastoma

JulieAnn Rader; Mike R. Russell; Lori S. Hart; Michael S. Nakazawa; Lili T. Belcastro; Daniel Martinez; Yimei Li; Erica L. Carpenter; Edward F. Attiyeh; Sharon J. Diskin; Sunkyu Kim; Sudha Parasuraman; Giordano Caponigro; Robert W. Schnepp; Andrew C. Wood; Bruce R. Pawel; Kristina A. Cole; John M. Maris

Purpose: Neuroblastoma is a pediatric cancer that continues to exact significant morbidity and mortality. Recently, a number of cell-cycle proteins, particularly those within the Cyclin D/CDK4/CDK6/RB network, have been shown to exert oncogenic roles in neuroblastoma, suggesting that their therapeutic exploitation might improve patient outcomes. Experimental Procedures: We evaluated the effect of dual CDK4/CDK6 inhibition on neuroblastoma viability using LEE011 (Novartis Oncology), a highly specific CDK4/6 inhibitor. Results: Treatment with LEE011 significantly reduced proliferation in 12 of 17 human neuroblastoma-derived cell lines by inducing cytostasis at nanomolar concentrations (mean IC50 = 307 ± 68 nmol/L in sensitive lines). LEE011 caused cell-cycle arrest and cellular senescence that was attributed to dose-dependent decreases in phosphorylated RB and FOXM1, respectively. In addition, responsiveness of neuroblastoma xenografts to LEE011 translated to the in vivo setting in that there was a direct correlation of in vitro IC50 values with degree of subcutaneous xenograft growth delay. Although our data indicate that neuroblastomas sensitive to LEE011 were more likely to contain genomic amplification of MYCN (P = 0.01), the identification of additional clinically accessible biomarkers is of high importance. Conclusions: Taken together, our data show that LEE011 is active in a large subset of neuroblastoma cell line and xenograft models, and supports the clinical development of this CDK4/6 inhibitor as a therapy for patients with this disease. Clin Cancer Res; 19(22); 6173–82. ©2013 AACR.


Cancer Cell | 2014

ALK Mutations Confer Differential Oncogenic Activation and Sensitivity to ALK Inhibition Therapy in Neuroblastoma

Scott C. Bresler; Daniel A. Weiser; Peter J. Huwe; Jin H. Park; Kateryna Krytska; Hannah Ryles; Marci Laudenslager; Eric Rappaport; Andrew C. Wood; Patrick McGrady; Michael D. Hogarty; Wendy B. London; Ravi Radhakrishnan; Mark A. Lemmon; Yael P. Mosse

Genetic studies have established anaplastic lymphoma kinase (ALK), a cell surface receptor tyrosine kinase, as a tractable molecular target in neuroblastoma. We describe comprehensive genomic, biochemical, and computational analyses of ALK mutations across 1,596 diagnostic neuroblastoma samples. ALK tyrosine kinase domain mutations occurred in 8% of samples--at three hot spots and 13 minor sites--and correlated significantly with poorer survival in high- and intermediate-risk neuroblastoma. Biochemical and computational studies distinguished oncogenic (constitutively activating) from nononcogenic mutations and allowed robust computational prediction of their effects. The mutated variants also showed differential in vitro crizotinib sensitivities. Our studies identify ALK genomic status as a clinically important therapeutic stratification tool in neuroblastoma and will allow tailoring of ALK-targeted therapy to specific mutations.


Blood | 2015

Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia.

Shannon L. Maude; Sibasish Dolai; Cristina Delgado-Martin; Tiffaney Vincent; Alissa Robbins; Arthavan Selvanathan; Theresa Ryan; Junior Hall; Andrew C. Wood; Sarah K. Tasian; Stephen P. Hunger; Mignon L. Loh; Charles G. Mullighan; Brent L. Wood; Michelle L. Hermiston; Stephan A. Grupp; Richard B. Lock; David T. Teachey

Early T-cell precursor (ETP) acute lymphoblastic leukemia (ALL) is a recently described subtype of T-ALL characterized by a unique immunophenotype and genomic profile, as well as a high rate of induction failure. Frequent mutations in cytokine receptor and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways led us to hypothesize that ETP-ALL is dependent on JAK/STAT signaling. Here we demonstrate aberrant activation of the JAK/STAT pathway in ETP-ALL blasts relative to non-ETP T-ALL. Moreover, ETP-ALL showed hyperactivation of STAT5 in response to interleukin-7, an effect that was abrogated by the JAK1/2 inhibitor ruxolitinib. In vivo, ruxolitinib displayed activity in 6 of 6 patient-derived murine xenograft models of ETP-ALL, with profound single-agent efficacy in 5 models. Ruxolitinib treatment decreased peripheral blast counts relative to pretreatment levels and compared with control (P < .01) in 5 of 6 ETP-ALL xenografts, with marked reduction in mean splenic blast counts (P < .01) in 6 of 6 samples. Surprisingly, both JAK/STAT pathway activation and ruxolitinib efficacy were independent of the presence of JAK/STAT pathway mutations, raising the possibility that the therapeutic potential of ruxolitinib in ETP-ALL extends beyond those cases with JAK mutations. These findings establish the preclinical in vivo efficacy of ruxolitinib in ETP-ALL, a biologically distinct subtype for which novel therapies are needed.


Cancer Research | 2012

Common Variation at BARD1 Results in the Expression of an Oncogenic Isoform That Influences Neuroblastoma Susceptibility and Oncogenicity

Kristopher R. Bosse; Sharon J. Diskin; Kristina A. Cole; Andrew C. Wood; Robert W. Schnepp; Geoffrey Norris; Le B. Nguyen; Jayanti Jagannathan; Michael J. Laquaglia; Cynthia Winter; Maura Diamond; Cuiping Hou; Edward F. Attiyeh; Yael P. Mosse; Vanessa Pineros; Eva Dizin; Yong-Qiang Zhang; Shahab Asgharzadeh; Robert C. Seeger; Mario Capasso; Bruce R. Pawel; Marcella Devoto; Hakon Hakonarson; Eric Rappaport; Irmgard Irminger-Finger; John M. Maris

The mechanisms underlying genetic susceptibility at loci discovered by genome-wide association study (GWAS) approaches in human cancer remain largely undefined. In this study, we characterized the high-risk neuroblastoma association at the BRCA1-related locus, BARD1, showing that disease-associated variations correlate with increased expression of the oncogenically activated isoform, BARD1β. In neuroblastoma cells, silencing of BARD1β showed genotype-specific cytotoxic effects, including decreased substrate-adherence, anchorage-independence, and foci growth. In established murine fibroblasts, overexpression of BARD1β was sufficient for neoplastic transformation. BARD1β stabilized the Aurora family of kinases in neuroblastoma cells, suggesting both a mechanism for the observed effect and a potential therapeutic strategy. Together, our findings identify BARD1β as an oncogenic driver of high-risk neuroblastoma tumorigenesis, and more generally, they illustrate how robust GWAS signals offer genomic landmarks to identify molecular mechanisms involved in both tumor initiation and malignant progression. The interaction of BARD1β with the Aurora family of kinases lends strong support to the ongoing work to develop Aurora kinase inhibitors for clinically aggressive neuroblastoma.


Oncogene | 2012

Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma

Erica L. Carpenter; Elizabeth Haglund; E. M. MacE; D. Deng; Daniel Martinez; Andrew C. Wood; A. K. Chow; D. Weiser; Lili T. Belcastro; Cynthia Winter; Scott C. Bresler; Shahab Asgharzadeh; Robert C. Seeger; Huaqing Zhao; Rong Guo; James G. Christensen; J. S. Orange; Bruce R. Pawel; Mark A. Lemmon; Yael P. Mosse

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in neuroblastoma, a devastating pediatric cancer of the sympathetic nervous system. Germline and somatically acquired ALK aberrations induce increased autophosphorylation, constitutive ALK activation and increased downstream signaling. Thus, ALK is a tractable therapeutic target in neuroblastoma, likely to be susceptible to both small-molecule tyrosine kinase inhibitors and therapeutic antibodies—as has been shown for other receptor tyrosine kinases in malignancies such as breast and lung cancer. Small-molecule inhibitors of ALK are currently being studied in the clinic, but common ALK mutations in neuroblastoma appear to show de novo insensitivity, arguing that complementary therapeutic approaches must be developed. We therefore hypothesized that antibody targeting of ALK may be a relevant strategy for the majority of neuroblastoma patients likely to have ALK-positive tumors. We show here that an antagonistic ALK antibody inhibits cell growth and induces in vitro antibody-dependent cellular cytotoxicity of human neuroblastoma-derived cell lines. Cytotoxicity was induced in cell lines harboring either wild type or mutated forms of ALK. Treatment of neuroblastoma cells with the dual Met/ALK inhibitor crizotinib sensitized cells to antibody-induced growth inhibition by promoting cell surface accumulation of ALK and thus increasing the accessibility of antigen for antibody binding. These data support the concept of ALK-targeted immunotherapy as a highly promising therapeutic strategy for neuroblastomas with mutated or wild-type ALK.


Clinical Cancer Research | 2017

Dual ALK and CDK4/6 inhibition demonstrates on-target synergy against neuroblastoma

Andrew C. Wood; Kateryna Krytska; Hannah Ryles; Nicole R. Infarinato; Renata Sano; Theodore D. Hansel; Lori S. Hart; Frederick J. King; Timothy R. Smith; Edward Ainscow; Kathryn B. Grandinetti; Tove Tuntland; Sunkyu Kim; Giordano Caponigro; You Qun He; Shiva Krupa; Nanxin Li; Jennifer L. Harris; Yael P. Mosse

Purpose: Anaplastic lymphoma kinase (ALK) is the most frequently mutated oncogene in the pediatric cancer neuroblastoma. We performed an in vitro screen for synergistic drug combinations that target neuroblastomas with mutations in ALK to determine whether drug combinations could enhance antitumor efficacy. Experimental Design: We screened combinations of eight molecularly targeted agents against 17 comprehensively characterized human neuroblastoma-derived cell lines. We investigated the combination of ceritinib and ribociclib on in vitro proliferation, cell cycle, viability, caspase activation, and the cyclin D/CDK4/CDK6/RB and pALK signaling networks in cell lines with representative ALK status. We performed in vivo trials in CB17 SCID mice bearing conventional and patient-derived xenograft models comparing ceritinib alone, ribociclib alone, and the combination, with plasma pharmacokinetics to evaluate for drug–drug interactions. Results: The combination of ribociclib, a dual inhibitor of cyclin-dependent kinase (CDK) 4 and 6, and the ALK inhibitor ceritinib demonstrated higher cytotoxicity (P = 0.008) and synergy scores (P = 0.006) in cell lines with ALK mutations as compared with cell lines lacking mutations or alterations in ALK. Compared with either drug alone, combination therapy enhanced growth inhibition, cell-cycle arrest, and caspase-independent cell death. Combination therapy achieved complete regressions in neuroblastoma xenografts with ALK-F1174L and F1245C de novo resistance mutations and prevented the emergence of resistance. Murine ribociclib and ceritinib plasma concentrations were unaltered by combination therapy. Conclusions: This preclinical combination drug screen with in vivo validation has provided the rationale for a first-in-children trial of combination ceritinib and ribociclib in a molecularly selected pediatric population. Clin Cancer Res; 23(11); 2856–68. ©2016 AACR.

Collaboration


Dive into the Andrew C. Wood's collaboration.

Top Co-Authors

Avatar

John M. Maris

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Yael P. Mosse

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Kristina A. Cole

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Sharon J. Diskin

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Cynthia Winter

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Edward F. Attiyeh

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Erica L. Carpenter

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Lili T. Belcastro

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Mark A. Lemmon

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Bruce R. Pawel

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge