Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Cameron Becker is active.

Publication


Featured researches published by Andrew Cameron Becker.


The Astrophysical Journal | 2007

Observational constraints on the nature of dark energy : First cosmological results from the essence supernova survey

William Michael Wood-Vasey; Gajus A. Miknaitis; Christopher W. Stubbs; Saurabh W. Jha; Adam G. Riess; Peter Marcus Garnavich; Robert P. Kirshner; C. A. Aguilera; Andrew Cameron Becker; J. W. Blackman; Stephane Blondin; Peter M. Challis; Alejandro Clocchiatti; A. Conley; Ricardo Alberto Covarrubias; Tamara M. Davis; A. V. Filippenko; Ryan J. Foley; Arti Garg; Malcolm Stuart Hicken; Kevin Krisciunas; Bruno Leibundgut; Weidong Li; Thomas Matheson; Antonino Miceli; Gautham S. Narayan; G. Pignata; Jose Luis Palacio Prieto; A. Rest; Maria Elena Salvo

We present constraints on the dark energy equation-of-state parameter, w = P/(rho c(2)), using 60 SNe Ia fromthe ESSENCE supernova survey. We derive a set of constraints on the nature of the dark energy assuming a flat universe. By including constraints on (Omega(M), w) from baryon acoustic oscillations, we obtain a value for a static equation-of-state parameter w = -1:05(-0.12)(+0: 13) (stat 1 sigma) +/- 0: 13 (sys) and Omega(M) = 0:274(-0.020)(+0:033) (stat 1 sigma) with a bestfit chi(2)/dof of 0.96. These results are consistent with those reported by the Supernova Legacy Survey from the first year of a similar program measuring supernova distances and redshifts. We evaluate sources of systematic error that afflict supernova observations and present Monte Carlo simulations that explore these effects. Currently, the largest systematic with the potential to affect our measurements is the treatment of extinction due to dust in the supernova host galaxies. Combining our set of ESSENCE SNe Ia with the first-results Supernova Legacy Survey SNe Ia, we obtain a joint constraint of w = -1:07(-0: 09)(+0:09) (stat 1 sigma) +/- 0: 13 ( sys), Omega(M) 0:267(-0:028)(+0:028) (stat 1 sigma) with a best-fit chi(2)/dof of 0.91. The current global SN Ia data alone rule out empty (Omega(M) = 0), matter-only Omega(M) = 0: 3, and Omega(M) = 1 universes at > 4.5 sigma. The current SN Ia data are fully consistent with a cosmological constant.


The Astrophysical Journal | 2000

The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations

C. Alcock; Robyn A. Allsman; David Randall Alves; Tim Axelrod; Andrew Cameron Becker; D. P. Bennett; Kem Holland Cook; N Dalal; Andrew J. Drake; Kenneth C. Freeman; Marla Geha; Kim Griest; M J Lehner; S. L. Marshall; D. Minniti; C A Nelson; Bruce A. Peterson; P Popowski; Mark Robin Pratt; Peter J. Quinn; Christopher W. Stubbs; W. Sutherland; Austin Tomaney; T Vandehei; Douglas L. Welch

We report on our search for microlensing toward the Large Magellanic Cloud (LMC). Analysis of 5.7 yr of photometry on 11.9 million stars in the LMC reveals 13-17 microlensing events. A detailed treatment of our detection efficiency shows that this is significantly more than the ~2-4 events expected from lensing by known stellar populations. The timescales () of the events range from 34 to 230 days. We estimate the microlensing optical depth toward the LMC from events with 2 < < 400 days to be τ = 1.2 × 10-7, with an additional 20% to 30% of systematic error. The spatial distribution of events is mildly inconsistent with LMC/LMC disk self-lensing, but is consistent with an extended lens distribution such as a Milky Way or LMC halo. Interpreted in the context of a Galactic dark matter halo, consisting partially of compact objects, a maximum-likelihood analysis gives a MACHO halo fraction of 20% for a typical halo model with a 95% confidence interval of 8%-50%. A 100% MACHO halo is ruled out at the 95% confidence level for all except our most extreme halo model. Interpreted as a Galactic halo population, the most likely MACHO mass is between 0.15 and 0.9 M☉, depending on the halo model, and the total mass in MACHOs out to 50 kpc is found to be 9 × 1010 M☉, independent of the halo model. These results are marginally consistent with our previous results, but are lower by about a factor of 2. This is mostly due to Poisson noise, because with 3.4 times more exposure and increased sensitivity to long-timescale events, we did not find the expected factor of ~4 more events. In addition to a larger data set, this work also includes an improved efficiency determination, improved likelihood analysis, and more thorough testing of systematic errors, especially with respect to the treatment of potential backgrounds to microlensing. We note that an important source of background are supernovae (SNe) in galaxies behind the LMC.


The Astrophysical Journal | 2007

Scrutinizing Exotic Cosmological Models Using ESSENCE Supernova Data Combined with Other Cosmological Probes

Tamara M. Davis; Edvard Mortsell; Jesper Sollerman; Andrew Cameron Becker; Stephane Blondin; Peter M. Challis; Alejandro Clocchiatti; Alexei V. Filippenko; Ryan J. Foley; Peter Marcus Garnavich; Saurabh W. Jha; Kevin Krisciunas; Robert P. Kirshner; Bruno Leibundgut; Weidong Li; Thomas Matheson; Gajus A. Miknaitis; G. Pignata; A. Rest; Adam G. Riess; Brian Paul Schmidt; R. C. Smith; Jason Spyromilio; Christopher W. Stubbs; Nicholas B. Suntzeff; John L. Tonry; William Michael Wood-Vasey; A. Zenteno

The first cosmological results from the ESSENCE supernova survey (Wood-Vasey and coworkers) are extended to a wider range of cosmological models including dynamical dark energy and nonstandard cosmological models. We fold in a greater number of external data sets such as the recent Higher-z release of high-redshift supernovae (Riess and coworkers), as well as several complementary cosmological probes. Model comparison statistics such as the Bayesian and Akaike information criteria are applied to gauge the worth of models. These statistics favor models that give a good fit with fewer parameters. Based on this analysis, the preferred cosmological model is the flat cosmological constant model, where the expansion history of the universe can be adequately described with only one free parameter describing the energy content of the universe. Among the more exotic models that provide good fits to the data, we note a preference for models whose best-fit parameters reduce them to the cosmological constant model.


The Astronomical Journal | 2008

The Sloan Digital Sky Survey - II:supernova survey: technical summary

Joshua A. Frieman; Bruce A. Bassett; Andrew Cameron Becker; Changsu Choi; D. Cinabro; F. DeJongh; D. L. DePoy; Ben Dilday; Mamoru Doi; Peter Marcus Garnavich; Craig J. Hogan; Jon A. Holtzman; Myungshin Im; Saurabh W. Jha; Richard Kessler; Kohki Konishi; Hubert Lampeitl; John P. Marriner; J. L. Marshall; David P. McGinnis; Gajus A. Miknaitis; Robert C. Nichol; Jose Luis Palacio Prieto; Adam G. Riess; Michael W. Richmond; Roger W. Romani; Masao Sako; Donald P. Schneider; Mathew Smith; Naohiro Takanashi

The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5° wide centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for the discovery of new objects. Supernova imaging observations are being acquired between September 1 and November 30 of 2005-7. During the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327 spectroscopically confirmed SNe Ia, 30 probable SNe Ia, 14 confirmed SNe Ib/c, 32 confirmed SNe II, plus a large number of photometrically identified SNe Ia, 94 of which have host-galaxy spectra taken so far. This paper provides an overview of the project and briefly describes the observations completed during the first two seasons of operation.


The Astrophysical Journal | 2010

MODELING THE TIME VARIABILITY OF SDSS STRIPE 82 QUASARS AS A DAMPED RANDOM WALK

Chelsea L. MacLeod; Željko Ivezić; C. S. Kochanek; S. Kozłowski; Brandon C. Kelly; E. Bullock; Amy E. Kimball; Branimir Sesar; D. Westman; Keira J. Brooks; Robert R. Gibson; Andrew Cameron Becker; W. H. de Vries

We model the time variability of ~9000 spectroscopically confirmed quasars in SDSS Stripe 82 as a damped random walk (DRW). Using 2.7 million photometric measurements collected over 10 yr, we confirm the results of Kelly et al. and Kozlowski et al. that this model can explain quasar light curves at an impressive fidelity level (0.01-0.02 mag). The DRW model provides a simple, fast (O(N) for N data points), and powerful statistical description of quasar light curves by a characteristic timescale (τ) and an asymptotic rms variability on long timescales (SF∞). We searched for correlations between these two variability parameters and physical parameters such as luminosity and black hole mass, and rest-frame wavelength. Our analysis shows SF∞ to increase with decreasing luminosity and rest-frame wavelength as observed previously, and without a correlation with redshift. We find a correlation between SF∞ and black hole mass with a power-law index of 0.18 ± 0.03, independent of the anti-correlation with luminosity. We find that τ increases with increasing wavelength with a power-law index of 0.17, remains nearly constant with redshift and luminosity, and increases with increasing black hole mass with a power-law index of 0.21 ± 0.07. The amplitude of variability is anti-correlated with the Eddington ratio, which suggests a scenario where optical fluctuations are tied to variations in the accretion rate. However, we find an additional dependence on luminosity and/or black hole mass that cannot be explained by the trend with Eddington ratio. The radio-loudest quasars have systematically larger variability amplitudes by about 30%, when corrected for the other observed trends, while the distribution of their characteristic timescale is indistinguishable from that of the full sample. We do not detect any statistically robust differences in the characteristic timescale and variability amplitude between the full sample and the small subsample of quasars detected by ROSAT. Our results provide a simple quantitative framework for generating mock quasar light curves, such as currently used in LSST image simulations.


The Astrophysical Journal | 2007

The ESSENCE supernova survey : Survey optimization, observations, and supernova photometry

Gajus A. Miknaitis; G. Pignata; A. Rest; William Michael Wood-Vasey; Stephane Blondin; Peter M. Challis; Robert Connon Smith; Christopher W. Stubbs; Nicholas B. Suntzeff; Ryan J. Foley; Thomas Matheson; John L. Tonry; C. A. Aguilera; J. W. Blackman; Andrew Cameron Becker; Alejandro Clocchiatti; Ricardo Alberto Covarrubias; Tamara M. Davis; A. V. Filippenko; Arti Garg; Peter Marcus Garnavich; Malcolm Stuart Hicken; Saurabh W. Jha; Kevin Krisciunas; Robert P. Kirshner; Bruno Leibundgut; Weidong Li; Antonino Miceli; Gautham S. Narayan; Jose Luis Palacio Prieto

We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the dark energy equation-of-state parameter, w = P/(rho c(2)). We present a meth ...


The Astrophysical Journal | 2000

The MACHO Project: Microlensing Optical Depth toward the Galactic Bulge from Difference Image Analysis

C. Alcock; Robyn A. Allsman; David Randall Alves; Tim Axelrod; Andrew Cameron Becker; D. P. Bennett; Kem Holland Cook; Andrew J. Drake; Kenneth C. Freeman; Marla Geha; Kim Griest; M J Lehner; S. L. Marshall; D. Minniti; C A Nelson; Bruce A. Peterson; P Popowski; M Pratt; Peter J. Quinn; Christopher W. Stubbs; W. Sutherland; Austin Tomaney; T. Vandehei; Douglas L. Welch

We present the microlensing optical depth toward the Galactic bulge based on the detection of 99 events found in our Difference Image Analysis (DIA) survey. This analysis encompasses 3 yr of data, covering ~17 million stars in ~4 deg2, to a source-star baseline magnitude limit of V = 23. The DIA technique improves the quality of photometry in crowded fields, and allows us to detect more microlensing events with faint source stars. We find that this method increases the number of detection events by 85% compared with the standard analysis technique. DIA light curves of the events are presented, and the microlensing fit parameters are given. The total microlensing optical depth is estimated to be τtotal = 2.43 × 10-6, averaged over eight fields centered at l = 268 and b = -335. For the bulge component, we find τbulge = 3.23 × 10-6, assuming a 25% stellar contribution from disk sources. These optical depths are in good agreement with the past determinations of the MACHO and OGLE groups, and are higher than predicted by contemporary Galactic models. We show that our observed event timescale distribution is consistent with the distribution expected from normal mass stars, if we adopt the Scalo stellar mass function as our lens mass function. However, we note that since there is still disagreement about the exact form of the stellar mass function, there is uncertainty in this conclusion. Based on our event timescale distribution, we find no evidence for the existence of a large population of brown dwarfs in the direction of the Galactic bulge.


Publications of the Astronomical Society of the Pacific | 2007

The Peculiar SN 2005hk: Do Some Type Ia Supernovae Explode as Deflagrations?

Mark M. Phillips; Weidong Li; Joshua A. Frieman; Sergei I. Blinnikov; D. L. DePoy; Jose Luis Palacio Prieto; Peter A. Milne; Carlos Contreras; Gaston Folatelli; Nidia I. Morrell; Mario Hamuy; Nicholas B. Suntzeff; M. Roth; Sergio Gonzalez; Wojtek Krzeminski; Alexei V. Filippenko; Wendy L. Freedman; Ryan Chornock; Saurabh W. Jha; Barry F. Madore; S. E. Persson; Christopher R. Burns; P. Wyatt; David C. Murphy; Ryan J. Foley; Mohan Ganeshalingam; F. J. D. Serduke; Kevin Krisciunas; Bruce A. Bassett; Andrew Cameron Becker

ABSTRACT We present extensive \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape


The Astronomical Journal | 2008

The Sloan Digital Sky Survey-II Supernova Survey: Search Algorithm and Follow-up Observations

M. Sako; Bruce A. Bassett; Andrew Cameron Becker; D. Cinabro; F. DeJongh; D. L. DePoy; Ben Dilday; Mamoru Doi; Joshua A. Frieman; Peter Marcus Garnavich; Craig J. Hogan; Jon A. Holtzman; Saurabh W. Jha; Richard Kessler; Kohki Konishi; Hubert Lampeitl; John P. Marriner; Gajus A. Miknaitis; Robert C. Nichol; Jose Luis Palacio Prieto; Adam G. Riess; Michael W. Richmond; Roger W. Romani; Donald P. Schneider; Mathew Smith; Mark SubbaRao; Naohiro Takanashi; Kouichi Tokita; Kurt van der Heyden; Naoki Yasuda

u^{\prime }g^{\prime }r^{\prime }i^{\prime }BVRIYJHK_{s}


The Astrophysical Journal | 2010

LIGHT CURVE TEMPLATES AND GALACTIC DISTRIBUTION OF RR LYRAE STARS FROM SLOAN DIGITAL SKY SURVEY STRIPE 82

Branimir Sesar; Željko Ivezić; Skyler H. Grammer; Dylan P. Morgan; Andrew Cameron Becker; Mario Juric; Nathan De Lee; James Annis; Timothy C. Beers; Xiaohui Fan; Robert H. Lupton; James E. Gunn; Gillian R. Knapp; Linhua Jiang; Sebastian Jester; David E. Johnston; Hubert Lampeitl

\end{document} photometry and optical spectroscopy of the Type Ia supernova (SN) 2005hk. These data reveal that SN 2005hk was nearly identical in its observed properties to SN 2002cx, which has been called “the most peculiar known Type Ia supernova.” Both supernovae exhibited high‐ionization SN 1991T–like premaximum spectra, yet low peak luminosities like that of SN 1991bg. The spectra reveal th...

Collaboration


Dive into the Andrew Cameron Becker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. P. Bennett

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Kenneth C. Freeman

Australian National University

View shared research outputs
Top Co-Authors

Avatar

C. Alcock

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kim Griest

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge