Andrew Crowe
Food and Environment Research Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew Crowe.
Science | 2013
Ian J. Bateman; Amii R. Harwood; Georgina M. Mace; Robert T. Watson; David James Abson; Barnaby Andrews; Amy Binner; Andrew Crowe; Brett Day; Steve Dugdale; Carlo Fezzi; Jo Foden; David Hadley; Roy Haines-Young; M Hulme; Andreas Kontoleon; Andrew Lovett; Paul Munday; Unai Pascual; James Paterson; Grischa Perino; Antara Sen; G. Siriwardena; D.P. van Soest; Mette Termansen
Monitoring Land Use Land-use decisions are based largely on agricultural market values. However, such decisions can lead to losses of ecosystem services, such as the provision of wildlife habitat or recreational space, the magnitude of which may overwhelm any market agricultural benefits. In a research project forming part of the UK National Ecosystem Assessment, Bateman et al. (p. 45) estimate the value of these net losses. Policies that recognize the diversity and complexity of the natural environment can target changes to different areas so as to radically improve land use in terms of agriculture and greenhouse gas emissions, recreation, and wild species habitat and diversity. The value of using land for recreation and wildlife, not just for agriculture, can usefully factor into planning decisions. Landscapes generate a wide range of valuable ecosystem services, yet land-use decisions often ignore the value of these services. Using the example of the United Kingdom, we show the significance of land-use change not only for agricultural production but also for emissions and sequestration of greenhouse gases, open-access recreational visits, urban green space, and wild-species diversity. We use spatially explicit models in conjunction with valuation methods to estimate comparable economic values for these services, taking account of climate change impacts. We show that, although decisions that focus solely on agriculture reduce overall ecosystem service values, highly significant value increases can be obtained from targeted planning by incorporating all potential services and their values and that this approach also conserves wild-species diversity.
Science | 2013
Ian J. Bateman; Amii R. Harwood; Georgina M. Mace; Robert T. Watson; David James Abson; Barnaby Andrews; Amy Binner; Andrew Crowe; Brett Day; Steve Dugdale; Carlo Fezzi; Jo Foden; David Hadley; Roy Haines-Young; M Hulme; Andreas Kontoleon; Andrew Lovett; Paul Munday; Unai Pascual; James Paterson; Grischa Perino; Antara Sen; G. Siriwardena; Daan P. van Soest; Mette Termansen
Monitoring Land Use Land-use decisions are based largely on agricultural market values. However, such decisions can lead to losses of ecosystem services, such as the provision of wildlife habitat or recreational space, the magnitude of which may overwhelm any market agricultural benefits. In a research project forming part of the UK National Ecosystem Assessment, Bateman et al. (p. 45) estimate the value of these net losses. Policies that recognize the diversity and complexity of the natural environment can target changes to different areas so as to radically improve land use in terms of agriculture and greenhouse gas emissions, recreation, and wild species habitat and diversity. The value of using land for recreation and wildlife, not just for agriculture, can usefully factor into planning decisions. Landscapes generate a wide range of valuable ecosystem services, yet land-use decisions often ignore the value of these services. Using the example of the United Kingdom, we show the significance of land-use change not only for agricultural production but also for emissions and sequestration of greenhouse gases, open-access recreational visits, urban green space, and wild-species diversity. We use spatially explicit models in conjunction with valuation methods to estimate comparable economic values for these services, taking account of climate change impacts. We show that, although decisions that focus solely on agriculture reduce overall ecosystem service values, highly significant value increases can be obtained from targeted planning by incorporating all potential services and their values and that this approach also conserves wild-species diversity.
Nature Communications | 2016
Ben A. Woodcock; Nick J. B. Isaac; James M. Bullock; David B. Roy; David G. Garthwaite; Andrew Crowe; Richard F. Pywell
Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines.
Journal of Applied Ecology | 2013
Lindsay C. Maskell; Andrew Crowe; Michael J. Dunbar; Bridget A. Emmett; Peter A. Henrys; Aidan M. Keith; Lisa Norton; Paul Scholefield; Douglas B. Clark; I.C. Simpson; Simon M. Smart
1. Understanding and quantifying constraints to multiple ecosystem service delivery and biodiversity is vital for developing management strategies for current and future human well-being. A particular challenge is to reconcile demand for increased food production with provision of other ecosystem services and biodiversity. 2. Using a spatially extensive data base (covering Great Britain) of co-located biophysical measurements (collected in the Countryside Survey), we explore the relationships between ecosystem service indicators and biodiversity across a temperate ecosystem productivity gradient. 3. Each service indicator has an individual response curve demonstrating that simultaneous analysis of multiple ecosystem services is essential for optimal service management. The shape of the response curve can be used to indicate whether ‘land sharing’ (provision of multiple services from the same land parcel) or ‘land sparing’ (single service prioritization) is the most appropriate option. 4. Soil carbon storage and above-ground net primary production indicators were found to define opposing ends of a primary gradient in service provision. Biodiversity and water quality indicators were highest at intermediate levels of both factors, consistent with a unimodal relationship along a productivity gradient. 5. Positive relationships occurred between multiple components of biodiversity, measured as taxon richness of all plants, bee and butterfly nectar plants, soil invertebrates and freshwater macroinvertebrates, indicating potential for management measures directed at one aspect of biodiversity to deliver wider ecosystem biodiversity. 6. We demonstrate that in temperate, human-dominated landscapes, ecosystem services are highly constrained by a fundamental productivity gradient. There are immediate trade-offs between productivity and soil carbon storage but potential synergies with services with different shaped relationships to production. 7. Synthesis and applications. Using techniques such as response curves to analyse multiple service interactions can inform the development of Spatial Decision Support tools and landscape-scale ecosystem service management options. At intermediate productivity, ‘land-sharing’ would optimize multiple services, however, to deliver significant soil carbon storage ‘land-sparing’ is required, that is, resources focused in low productivity areas with high carbon to maximize investment return. This study emphasizes that targets for services per unit area need to be set within the context of the national gradients reported here to ensure best use of limited resources.
Scientific Reports | 2015
Giles E. Budge; D. Garthwaite; Andrew Crowe; Nigel Boatman; Keith S. Delaplane; Mike A. Brown; H. H. Thygesen; Stéphane Pietravalle
Chronic exposure to neonicotinoid insecticides has been linked to reduced survival of pollinating insects at both the individual and colony level, but so far only experimentally. Analyses of large-scale datasets to investigate the real-world links between the use of neonicotinoids and pollinator mortality are lacking. Moreover, the impacts of neonicotinoid seed coatings in reducing subsequent applications of foliar insecticide sprays and increasing crop yield are not known, despite the supposed benefits of this practice driving widespread use. Here, we combine large-scale pesticide usage and yield observations from oilseed rape with those detailing honey bee colony losses over an 11 year period, and reveal a correlation between honey bee colony losses and national-scale imidacloprid (a neonicotinoid) usage patterns across England and Wales. We also provide the first evidence that farmers who use neonicotinoid seed coatings reduce the number of subsequent applications of foliar insecticide sprays and may derive an economic return. Our results inform the societal discussion on the pollinator costs and farming benefits of prophylactic neonicotinoid usage on a mass flowering crop.
Journal of Environmental Management | 2012
Lisa Norton; Lindsay C. Maskell; S.S. Smart; Michael J. Dunbar; Bridget A. Emmett; P.D. Carey; P. Williams; Andrew Crowe; K. Chandler; W.A. Scott; C.M. Wood
Countryside Survey is a unique large scale long-term monitoring programme investigating stock and change of habitats, landscape features, vegetation, soil and freshwaters of Great Britain. Repeat field surveys combine policy and scientific objectives to provide evidence on how multiple aspects of the environment are changing over time, a key goal of international science in the face of profound human impacts on ecosystems. Countryside Survey 2007 (CS2007), the fifth survey since 1978, retained consistency with previous surveys, whilst evolving in line with technological and conceptual advances in the collection and integration of data to understand landscape change. This paper outlines approaches taken in the 2007 survey and its subsequent analysis and presents some of the headline results of the survey and their relevance for national and international policy objectives. Key changes between 1998 and 2007 included: a) significant shifts in agricultural land cover from arable to grassland, accompanied by increases in the area of broadleaved woodland, b) decreases in the length of managed hedges associated with agricultural land, as a proportion deteriorated to lines of trees and c) increases in the areas and numbers of wet habitats (standing open water, ponds) and species preferring wetter conditions (1998-2007 and 1978-2007). Despite international policy directed at maintaining and enhancing biodiversity, there were widespread decreases in species richness in all linear and area habitats, except on arable land, consistent with an increase in competitive and late successional species between 1998 and 2007 and 1978 and 2007. Late successional and competitive species: Stinging nettle (Urtica dioica), Hawthorn (Cratageous monogyna) and Bramble (Rubus fruticosus), in the top ten recorded species recorded in 2007, all increased between 1998 and 2007. The most commonly recorded species in CS (1990, 1998 and 2007) was agricultural Ryegrass (Lolium perenne). Increases in both water quality and soil pH were in line with policy aimed at addressing previous deterioration of both. Headwater streams broadly showed continued improvements in biological quality from 1998 to 2007, continuing trends seen since 1990. In soils, there were significant increases in soil pH between 1998 and 2007 consistent with recovery from acidification.
Global Change Biology | 2014
Chiara Polce; Michael P. D. Garratt; Mette Termansen; Julian Ramirez-Villegas; Andrew J. Challinor; Martin G Lappage; Nigel Boatman; Andrew Crowe; Ayenew Melese Endalew; Simon G. Potts; Kate E. Somerwill; Jacobus C. Biesmeijer
Understanding how climate change can affect crop-pollinator systems helps predict potential geographical mismatches between a crop and its pollinators, and therefore identify areas vulnerable to loss of pollination services. We examined the distribution of orchard species (apples, pears, plums and other top fruits) and their pollinators in Great Britain, for present and future climatic conditions projected for 2050 under the SRES A1B Emissions Scenario. We used a relative index of pollinator availability as a proxy for pollination service. At present, there is a large spatial overlap between orchards and their pollinators, but predictions for 2050 revealed that the most suitable areas for orchards corresponded to low pollinator availability. However, we found that pollinator availability may persist in areas currently used for fruit production, which are predicted to provide suboptimal environmental suitability for orchard species in the future. Our results may be used to identify mitigation options to safeguard orchard production against the risk of pollination failure in Great Britain over the next 50 years; for instance, choosing fruit tree varieties that are adapted to future climatic conditions, or boosting wild pollinators through improving landscape resources. Our approach can be readily applied to other regions and crop systems, and expanded to include different climatic scenarios.
PLOS ONE | 2013
Chiara Polce; Mette Termansen; Jesús Aguirre-Gutiérrez; Nigel Boatman; Giles E. Budge; Andrew Crowe; Michael P. D. Garratt; Stéphane Pietravalle; Simon G. Potts; Jorge A. Ramirez; Kate E. Somerwill; Jacobus C. Biesmeijer
Insect pollination benefits over three quarters of the worlds major crops. There is growing concern that observed declines in pollinators may impact on production and revenues from animal pollinated crops. Knowing the distribution of pollinators is therefore crucial for estimating their availability to pollinate crops; however, in general, we have an incomplete knowledge of where these pollinators occur. We propose a method to predict geographical patterns of pollination service to crops, novel in two elements: the use of pollinator records rather than expert knowledge to predict pollinator occurrence, and the inclusion of the managed pollinator supply. We integrated a maximum entropy species distribution model (SDM) with an existing pollination service model (PSM) to derive the availability of pollinators for crop pollination. We used nation-wide records of wild and managed pollinators (honey bees) as well as agricultural data from Great Britain. We first calibrated the SDM on a representative sample of bee and hoverfly crop pollinator species, evaluating the effects of different settings on model performance and on its capacity to identify the most important predictors. The importance of the different predictors was better resolved by SDM derived from simpler functions, with consistent results for bees and hoverflies. We then used the species distributions from the calibrated model to predict pollination service of wild and managed pollinators, using field beans as a test case. The PSM allowed us to spatially characterize the contribution of wild and managed pollinators and also identify areas potentially vulnerable to low pollination service provision, which can help direct local scale interventions. This approach can be extended to investigate geographical mismatches between crop pollination demand and the availability of pollinators, resulting from environmental change or policy scenarios.
Methods in Ecology and Evolution | 2017
Mark A. K. Gillespie; Mathilde Baude; Jacobus C. Biesmeijer; Nigel Boatman; Giles E. Budge; Andrew Crowe; Jane Memmott; R. Daniel Morton; Stéphane Pietravalle; Simon G. Potts; Deepa Senapathi; Simon M. Smart; William E. Kunin
1. Ecological processes operating on large spatio-temporal scales are difficult to disentangle with traditional empirical approaches. Alternatively, researchers can take advantage of ‘natural’ experiments, where experimental control is exercised by careful site selection. Recent advances in developing protocols for designing these ‘pseudo-experiments’ commonly do not consider the selection of the focal region and predictor variables are usually restricted to two. Here, we advance this type of site selection protocol to study the impact of multiple landscape scale factors on pollinator abundance and diversity across multiple regions. 2. Using datasets of geographic and ecological variables with national coverage, we applied a novel hierarchical computation approach to select study sites that contrast asmuch as possible in four key variables,while attempting tomaintain regional comparability and national representativeness. There were three main steps to the protocol: (i) selection of six 100 9 100 km2 regions that collectively provided land cover representative of the national land average, (ii) mapping of potential sites into a multivariate space with axes representing four key factors potentially influencing insect pollinator abundance, and (iii) applying a selection algorithm which maximized differences between the four key variables, while controlling for a set of external constraints. 3. Validation data for the site selection metrics were recorded alongside the collection of data on pollinator populations during two field campaigns. While the accuracy of the metric estimates varied, the site selection succeeded in objectively identifying field sites that differed significantly in values for each of the four key variables. Between-variable correlations were also reduced or eliminated, thus facilitating analysis of their separate effects. 4. This study has shown that national datasets can be used to select randomized and replicated field sites objectively within multiple regions and alongmultiple interacting gradients. Similar protocols could be used for studying a range of alternative research questions related to land use or other spatially explicit environmental variables, and to identify networks of field sites for other countries, regions, drivers and response taxa in a wide range of scenarios.
Land Use Policy | 2012
Lisa Norton; H. Inwood; Andrew Crowe; A. Baker