Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew D. A. Maidment is active.

Publication


Featured researches published by Andrew D. A. Maidment.


Journal of Bone and Joint Surgery, American Volume | 2009

Identification of progenitor cells that contribute to heterotopic skeletogenesis.

Vitali Y. Lounev; Michael N. Wosczyna; Masakazu Yamamoto; Andrew D. A. Maidment; Eileen M. Shore; David L. Glaser; David J. Goldhamer; Frederick S. Kaplan

BACKGROUND Individuals who have fibrodysplasia ossificans progressiva develop an ectopic skeleton because of genetic dysregulation of bone morphogenetic protein (BMP) signaling in the presence of inflammatory triggers. The identity of progenitor cells that contribute to various stages of BMP-induced heterotopic ossification relevant to fibrodysplasia ossificans progressiva and related disorders is unknown. An understanding of the cellular basis of heterotopic ossification will aid in the development of targeted, cell-specific therapies for the treatment and prevention of heterotopic ossification. METHODS We used Cre/loxP lineage tracing methods in the mouse to identify cell lineages that contribute to all stages of heterotopic ossification. Specific cell populations were permanently labeled by crossing lineage-specific Cre mice with the Cre-dependent reporter mice R26R and R26R-EYFP. Two mouse models were used to induce heterotopic ossification: (1) intramuscular injection of BMP2/Matrigel and (2) cardiotoxin-induced skeletal muscle injury in transgenic mice that misexpress BMP4 at the neuromuscular junction. The contribution of labeled cells to fibroproliferative lesions, cartilage, and bone was evaluated histologically by light and fluorescence microscopy. The cell types evaluated as possible progenitors included skeletal muscle stem cells (MyoD-Cre), endothelium and endothelial precursors (Tie2-Cre), and vascular smooth muscle (Smooth Muscle Myosin Heavy Chain-Cre [SMMHC-Cre]). RESULTS Vascular smooth muscle cells did not contribute to any stage of heterotopic ossification in either mouse model. Despite the osteogenic response of cultured skeletal myoblasts to BMPs, skeletal muscle precursors in vivo contributed minimally to heterotopic ossification (<5%), and this contribution was not increased by cardiotoxin injection, which induces muscle regeneration and mobilizes muscle stem cells. In contrast, cells that expressed the vascular endothelial marker Tie2/Tek at some time in their developmental history contributed robustly to the fibroproliferative, chondrogenic, and osteogenic stages of the evolving heterotopic endochondral anlagen. Importantly, endothelial markers were expressed by cells at all stages of heterotopic ossification. Finally, muscle injury and associated inflammation were sufficient to trigger fibrodysplasia ossificans progressiva-like heterotopic ossification in a setting of chronically stimulated BMP activity. CONCLUSIONS Tie2-expressing progenitor cells, which are endothelial precursors, respond to an inflammatory trigger, differentiate through an endochondral pathway, contribute to every stage of the heterotopic endochondral anlagen, and form heterotopic bone in response to overactive BMP signaling in animal models of fibrodysplasia ossificans progressiva. Thus, the ectopic skeleton is not only supplied by a rich vasculature, but appears to be constructed in part by cells of vascular origin. Further, these data strongly suggest that dysregulation of the BMP signaling pathway and an inflammatory microenvironment are both required for the formation of fibrodysplasia ossificans progressiva-like lesions.


Medical Physics | 2002

Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation

Predrag R. Bakic; Michael Albert; Dragana Brzakovic; Andrew D. A. Maidment

A method is proposed for generating synthetic mammograms based upon simulations of breast tissue and the mammographic imaging process. A computer breast model has been designed with a realistic distribution of large and medium scale tissue structures. Parameters controlling the size and placement of simulated structures (adipose compartments and ducts) provide a method for consistently modeling images of the same simulated breast with modified position or acquisition parameters. The mammographic imaging process is simulated using a compression model and a model of the x-ray image acquisition process. The compression model estimates breast deformation using tissue elasticity parameters found in the literature and clinical force values. The synthetic mammograms were generated by a mammogram acquisition model using a monoenergetic parallel beam approximation applied to the synthetically compressed breast phantom.


Journal of Bone and Mineral Research | 2012

An Acvr1 R206H knock-in mouse has fibrodysplasia ossificans progressiva

Salin A. Chakkalakal; Deyu Zhang; Andria L. Culbert; Michael R. Convente; Robert J. Caron; Alexander C. Wright; Andrew D. A. Maidment; Frederick S. Kaplan; Eileen M. Shore

Fibrodysplasia ossificans progressiva (FOP; MIM #135100) is a debilitating genetic disorder of dysregulated cellular differentiation characterized by malformation of the great toes during embryonic skeletal development and by progressive heterotopic endochondral ossification postnatally. Patients with these classic clinical features of FOP have the identical heterozygous single nucleotide substitution (c.617G > A; R206H) in the gene encoding ACVR1/ALK2, a bone morphogenetic protein (BMP) type I receptor. Gene targeting was used to develop an Acvr1 knock‐in model for FOP (Acvr1R206H/+). Radiographic analysis of Acvr1R206H/+ chimeric mice revealed that this mutation induced malformed first digits in the hind limbs and postnatal extraskeletal bone formation, recapitulating the human disease. Histological analysis of murine lesions showed inflammatory infiltration and apoptosis of skeletal muscle followed by robust formation of heterotopic bone through an endochondral pathway, identical to that seen in patients. Progenitor cells of a Tie2+ lineage participated in each stage of endochondral osteogenesis. We further determined that both wild‐type (WT) and mutant cells are present within the ectopic bone tissue, an unexpected finding that indicates that although the mutation is necessary to induce the bone formation process, the mutation is not required for progenitor cell contribution to bone and cartilage. This unique knock‐in mouse model provides novel insight into the genetic regulation of heterotopic ossification and establishes the first direct in vivo evidence that the R206H mutation in ACVR1 causes FOP.


Medical Physics | 2005

Validation of MTF measurement for digital mammography quality control

Ann-Katherine Carton; Dirk Vandenbroucke; Luc Struye; Andrew D. A. Maidment; Yen-Hong Kao; Michael Albert; Hilde Bosmans; Guy Marchal

The modulation transfer function (MTF) describes the spatial resolution properties of imaging systems. In this work, the accuracy of our implementation of the edge method for calculating the presampled MTF was examined. Synthetic edge images with known MTF were used as gold standards for determining the robustness of the edge method. These images simulated realistic data from clinical digital mammography systems, and contained intrinsic system factors that could affect the MTF accuracy, such as noise, scatter, and flat-field nonuniformities. Our algorithm is not influenced by detector dose variations for MTF accuracy up to 1∕2 the sampling frequency. We investigated several methods for noise reduction, including truncating the supersampled line spread function (LSF), windowing the LSF, applying a local exponential fit to the LSF, and applying a monotonic constraint to the supersampled edge spread function. Only the monotonic constraint did not introduce a systematic error; the other methods could result in MTF underestimation. Overall, our edge method consistently computed MTFs which were in good agreement with the true MTF. The edge method was then applied to images from a commercial storage-phosphor based digital mammography system. The calculated MTF was affected by the size (sides of 2.5, 5, or 10cm) and the composition (lead or tungsten) of the edge device. However, the effects on the MTF were observed only with regard to the low frequency drop (LFD). Scatter nonuniformity was dependent on edge size, and could lead to slight underestimation of LFD. Nevertheless, this negative effect could be minimized by using an edge of 5cm or larger. An edge composed of lead is susceptible to L-fluorescence, which causes overestimation of the LFD. The results of this work are intended to underline the need for clear guidelines if the MTF is to be given a more crucial role in acceptance tests and routine assessment of digital mammography systems: the MTF algorithm and edge object test tool need to be publicly validated.


Medical Physics | 2011

Development and characterization of an anthropomorphic breast software phantom based upon region-growing algorithm.

Predrag R. Bakic; Cuiping Zhang; Andrew D. A. Maidment

PURPOSE We present a novel algorithm for computer simulation of breast anatomy for generation of anthropomorphic software breast phantoms. A realistic breast simulation is necessary for preclinical validation of volumetric imaging modalities. METHODS The anthropomorphic software breast phantom simulates the skin, regions of adipose and fibroglandular tissue, and the matrix of Coopers ligaments and adipose compartments. The adipose compartments are simulated using a seeded region-growing algorithm; compartments are grown from a set of seed points with specific orientation and growing speed. The resulting adipose compartments vary in shape and size similar to real breasts; the adipose region has a compact coverage by adipose compartments of various sizes, while the fibroglandular region has fewer, more widely separated adipose compartments. Simulation parameters can be selected to cover the breadth of variations in breast anatomy observed clinically. RESULTS When simulating breasts of the same glandularity with different numbers of adipose compartments, the average compartment volume was proportional to the phantom size and inversely proportional to the number of simulated compartments. The use of the software phantom in clinical image simulation is illustrated by synthetic digital breast tomosynthesis images of the phantom. The proposed phantom design was capable of simulating breasts of different size, glandularity, and adipose compartment distribution. The region-growing approach allowed us to simulate adipose compartments with various size and shape. Qualitatively, simulated x-ray projections of the phantoms, generated using the proposed algorithm, have a more realistic appearance compared to previous versions of the phantom. CONCLUSIONS A new algorithm for computer simulation of breast anatomy has been proposed that improved the realism of the anthropomorphic software breast phantom.


Medical Physics | 2006

Quality control for digital mammography in the ACRIN DMIST trial: Part I

Aili K. Bloomquist; Martin J. Yaffe; Etta D. Pisano; R. Edward Hendrick; Gordon E. Mawdsley; Stewart Bright; Sam shen; Mahadevappa Mahesh; Edward L. Nickoloff; Richard C. Fleischman; Mark B. Williams; Andrew D. A. Maidment; Daniel J. Beideck; Joseph Och; J. A. Seibert

The Digital Mammography Imaging Screening Trial, conducted by the American College of Radiology Imaging Network, is a clinical trial designed to compare the accuracy of full-field digital mammography (FFDM) versus screen-film mammography in a screening population. Five FFDM systems from four manufacturers (Fischer, Fuji, General Electric, and Lorad) were employed in the study at 35 clinical sites. A core physics team devised and implemented tests to evaluate these systems. A detailed description of physics and quality control tests is presented, including estimates of: mean glandular dose, modulation transfer function (MTF), 2D noise power spectra, and signal-to-noise ratio (SNR). The mean glandular doses for the standard breast ranged from 0.79 to 2.98 mGy, with 1.62 mGy being the average across all units and machine types. For the five systems evaluated, the MTF dropped to 50% at markedly different percentages (22% to 87%) of the Nyquist limit, indicating that factors other than detector element (del) size have an important effect on spatial resolution. Noise power spectra and SNR were measured; however, we found that it was difficult to standardize and compare these between units. For each machine type, the performance as measured by the tests was very consistent, and no predictive benefit was seen for many of the tests during the 2-year period of the trial. It was found that, after verification of proper operation during acceptance testing, if systems failed they generally did so suddenly rather than through gradual deterioration of performance. Because of the relatively short duration of this study further, investigation of the long-term failure characteristics of these systems is advisable.


Academic Radiology | 1996

Comparison of receiver operating characteristic curves on the basis of optimal operating points

Ethan J. Halpern; Michael Albert; Abba M. Krieger; Charles E. Metz; Andrew D. A. Maidment

RATIONALE AND OBJECTIVES We developed a method of comparing receiver operating characteristic (ROC) curves on the basis of the utilities associated with their optimal operating points (OOPs). METHODS OOPs were computed for paired ROC curves on the basis of isocost lines in ROC space with slopes ranging from 0.1 to 3.0. For each pair of OOPs corresponding to a single isocost slope, the difference in costs and the variance of this difference was computed. A sensitivity analysis was thus obtained for the difference between the two curves over a range of isocost slopes. Three published data sets were evaluated using this technique, as well as by comparisons of areas under the curves and of true-positive fractions at fixed false-positive fractions. RESULTS The OOPs of paired ROC curves often occur at different false-positive fractions. Comparisons of ROC curves on the basis of OOPs may provide results that differ from comparisons of curves at a fixed false-positive fraction. CONCLUSION ROC curves may be compared on the basis of utilities associated with their OOPs. This comparison of the optimal performance of two diagnostic tests may differ from conventional statistical comparisons.


Medical Physics | 2002

Mammogram synthesis using a 3D simulation. II. Evaluation of synthetic mammogram texture

Predrag R. Bakic; Michael Albert; Dragana Brzakovic; Andrew D. A. Maidment

We have evaluated a method for synthesizing mammograms by comparing the texture of clinical and synthetic mammograms. The synthesis algorithm is based upon simulations of breast tissue and the mammographic imaging process. Mammogram texture was synthesized by projections of simulated adipose tissue compartments. It was hypothesized that the synthetic and clinical texture have similar properties, assuming that the mammogram texture reflects the 3D tissue distribution. The size of the projected compartments was computed by mathematical morphology. The texture energy and fractal dimension were also computed and analyzed in terms of the distribution of texture features within four different tissue regions in clinical and synthetic mammograms. Comparison of the cumulative distributions of the mean features computed from 95 mammograms showed that the synthetic images simulate the mean features of the texture of clinical mammograms. Correlation of clinical and synthetic texture feature histograms, averaged over all images, showed that the synthetic images can simulate the range of features seen over a large group of mammograms. The best agreement with clinical texture was achieved for simulated compartments with radii of 4-13.3 mm in predominantly adipose tissue regions, and radii of 2.7-5.33 and 1.3-2.7 mm in retroareolar and dense fibroglandular tissue regions, respectively.


Medical Physics | 2008

Optimization of exposure parameters in full field digital mammography

Mark B. Williams; Priya Raghunathan; Mitali J. More; J. Anthony Seibert; Alexander L. C. Kwan; Joseph Y. Lo; Ehsan Samei; Nicole T. Ranger; Laurie L. Fajardo; Allen McGruder; Sandra M. McGruder; Andrew D. A. Maidment; Martin J. Yaffe; Aili K. Bloomquist; Gordon E. Mawdsley

Optimization of exposure parameters (target, filter, and kVp) in digital mammography necessitates maximization of the image signal-to-noise ratio (SNR), while simultaneously minimizing patient dose. The goal of this study is to compare, for each of the major commercially available full field digital mammography (FFDM) systems, the impact of the selection of technique factors on image SNR and radiation dose for a range of breast thickness and tissue types. This phantom study is an update of a previous investigation and includes measurements on recent versions of two of the FFDM systems discussed in that article, as well as on three FFDM systems not available at that time. The five commercial FFDM systems tested, the Senographe 2000D from GE Healthcare, the Mammomat Novation DR from Siemens, the Selenia from Hologic, the Fischer Senoscan, and Fujis 5000MA used with a Lorad M-IV mammography unit, are located at five different university test sites. Performance was assessed using all available x-ray target and filter combinations and nine different phantom types (three compressed thicknesses and three tissue composition types). Each phantom type was also imaged using the automatic exposure control (AEC) of each system to identify the exposure parameters used under automated image acquisition. The figure of merit (FOM) used to compare technique factors is the ratio of the square of the image SNR to the mean glandular dose. The results show that, for a given target/filter combination, in general FOM is a slowly changing function of kVp, with stronger dependence on the choice of target/filter combination. In all cases the FOM was a decreasing function of kVp at the top of the available range of kVp settings, indicating that higher tube voltages would produce no further performance improvement. For a given phantom type, the exposure parameter set resulting in the highest FOM value was system specific, depending on both the set of available target/filter combinations, and on the receptor type. In most cases, the AECs of the FFDM systems successfully identified exposure parameters resulting in FOM values near the maximum ones, however, there were several examples where AEC performance could be improved.


Medical Physics | 1994

Analysis of the spatial‐frequency‐dependent DQE of optically coupled digital mammography detectors

Andrew D. A. Maidment; Martin J. Yaffe

The effect of optical coupling efficiency on the spatial-frequency-dependent propagation of signal and noise is considered for x-ray image detectors for digital mammography in which a phosphor screen is optically coupled to a charge-coupled device (CCD) image array. For experimental purposes, optical coupling between a Gd2O2S:Tb phosphor screen and a CCD image array was provided by relay lenses. Neutral density filters were inserted between the lenses to vary the optical coupling efficiency without altering the inherent spatial resolution. The total coupling efficiency, defined as the number of electrons (e-) recorded in the CCD per x-ray interaction in the phosphor, was calculated in each case. The modulation transfer function, and the contributions to the total noise power spectrum (NPS) of x-ray quantum noise, secondary quantum noise, and inherent detector noise were measured as a function of coupling efficiency. These data were used to calculate the spatial-frequency-dependent detective quantum efficiency [DQE(f)]. The NPS due to x-ray quantum noise had a significant spatial-frequency dependence for coupling efficiencies of more than 9 e- per x-ray interaction, but little spatial-frequency dependence for coupling efficiencies of less than 2 e- per x-ray interaction. These results indicate that to preserve high spatial-frequency values of DQE(f), and to ensure that images are x-ray quantum-noise limited at high spatial frequencies, a coupling efficiency on the order of 10 e- per x-ray interaction is required.(ABSTRACT TRUNCATED AT 250 WORDS)

Collaboration


Dive into the Andrew D. A. Maidment's collaboration.

Top Co-Authors

Avatar

Predrag R. Bakic

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Despina Kontos

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Michael Albert

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Emily F. Conant

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin J. Yaffe

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge