Andrew D. Benson
Eastern Virginia Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew D. Benson.
Brain Research Bulletin | 2014
Jessica A. Burket; Andrew D. Benson; Amy H. Tang; Stephen I. Deutsch
Overactivation of the mammalian target of rapamycin (mTOR) has been implicated in the pathogenesis of syndromic forms of autism spectrum disorders (ASDs), such as tuberous sclerosis complex, neurofibromatosis 1, and fragile X syndrome. Administration of mTORC1 (mTOR complex 1) inhibitors (e.g. rapamycin) in syndromic mouse models of ASDs improved behavior, cognition, and neuropathology. However, since only a minority of ASDs are due to the effects of single genes (∼10%), there is a need to explore inhibition of mTOR activity in mouse models that may be more relevant to the majority of nonsyndromic presentations, such as the genetically inbred BTBR T(+)Itpr3(tf)/J (BTBR) mouse model of ASDs. BTBR mice have social impairment and exhibit increased stereotypic behavior. In prior work, d-cycloserine, a partial glycineB site agonist that targets the N-methyl-d-aspartate (NMDA) receptor, was shown to improve sociability in both Balb/c and BTBR mouse models of ASDs. Importantly, NMDA receptor activation regulates mTOR signaling activity. The current study investigated the ability of rapamycin (10mg/kg, i.p.×four days), an mTORC1 inhibitor, to improve sociability and stereotypic behavior in BTBR mice. Using a standard paradigm to assess mouse social behavior, rapamycin improved several measures of sociability in the BTBR mouse, suggesting that mTOR overactivation represents a therapeutic target that mediates or contributes to impaired sociability in the BTBR mouse model of ASDs. Interestingly, there was no effect of rapamycin on stereotypic behaviors in this mouse model.
Brain Research | 2012
Stephen I. Deutsch; Gerald J. Pepe; Jessica A. Burket; Erin E. Winebarger; Amy L. Herndon; Andrew D. Benson
Balb/c mice are a model of impaired sociability and social motivation relevant to autism spectrum disorders (ASDs). Impaired sociability of 8-week old Balb/c mice is attenuated by agonists of the glycine(B) site on the NMDA receptor, such as d-cycloserine. Although ASDs are often recognized in toddlerhood, there is interest in earlier identification (e.g., before 6 months) and disease-modifying interventions to improve functional outcomes. Thus, we wondered if d-cycloserine could improve sociability in 4-week old Balb/c mice, similar to its effects in 8-week old mice. d-Cycloserine improved measures of impaired sociability in 4-week old (i.e., one-week post-weanling) Balb/c mice. Moreover, because stereotypies can compete with the salience of social stimuli, we compared Balb/c and Swiss Webster mice on several spontaneous stereotypic behaviors emerging during social interaction with a social stimulus mouse. Interestingly, similar to 8-week old mice, spontaneous stereotypic behaviors during social interaction were more intense in the 4-week old Swiss Webster mice; furthermore, d-cycloserine reduced their intensity. Thus, d-cycloserine improves both sociability and stereotypic behaviors, but these effects may lack strain-selectivity. A prosocial effect of d-cycloserine was observed at a dose as low as 32.0mg/kg in Balb/c mice. d-cycloserine has the therapeutic properties of a desired medication for ASDs; specifically, a medication should not improve stereotypic behaviors at the expense of worsening sociability and vice versa. The data suggest that targeting the NMDA receptor can have promising therapeutic effects on two prominent domains of psychopathology in ASDs: impaired sociability and spontaneous stereotypic behaviors.
Brain Research Bulletin | 2013
Jessica A. Burket; Andrew D. Benson; Amy H. Tang; Stephen I. Deutsch
The genetically inbred BTBR T+ Itpr3tf/J (BTBR) mouse is a proposed model of autism spectrum disorders (ASDs). Similar to several syndromic forms of ASDs, mTOR activity may be enhanced in this mouse strain as a result of increased Ras signaling. Recently, D-cycloserine, a partial glycineB site agonist that targets the NMDA receptor, was shown to improve the sociability of the Balb/c mouse strain, another proposed genetically inbred model of ASDs. NMDA receptor activation is an important regulator of mTOR signaling activity. Given the ability of D-cycloserine to improve the sociability of the Balb/c mouse strain and the regulatory role of the NMDA receptor in mTOR signaling, we wondered if D-cycloserine would improve the impaired sociability of the BTBR mouse strain. D-Cycloserine (320 mg/kg, ip) improved measures of sociability in a standard sociability paradigm and spontaneous grooming that emerged during social interaction with an ICR stimulus mouse in the BTBR strain; however, similar effects were observed in the Swiss Webster comparator strain, raising questions about their strain-selectivity. Importantly, the profile of D-cycloserines effects on both measures of sociability and stereotypies is consistent with that of a desired medication for ASDs; specifically, a desired medication would not improve sociability at the expense of worsening stereotypic behaviors or vice versa.
Progress in Neuro-psychopharmacology & Biological Psychiatry | 2014
Stephen I. Deutsch; Jessica A. Burket; Andrew D. Benson
As persons with Downs syndrome (DS) age into the third decade and beyond, they develop Alzheimers disease (AD)-like histopathological changes in brain and may manifest progressive worsening of adaptive functions. Increasingly, persons with DS have near-normal to normal life spans; thus, it has become a therapeutic imperative to preserve adaptive functions and ability to live as independently as possible in the least restrictive environment throughout adulthood. Data suggest that these histopathological changes and worsening adaptive functions result, at least in part, from the binding of the amyloidogenic Aβ1-42 peptide to α7 nicotinic acetylcholine receptors (α7nAChRs) on the surface of neurons, which can lead to the internalization of the tightly-bound complex and cell lysis. Pharmacotherapeutic targeting of the α7nAChR may inhibit the creation of the Aβ1-42-α7nAChR complex, which has been observed both intraneuronally and as a component of the amyloid plaque seen in AD. Additionally, selective α7nAChR agonists may improve memory and cognition independently of their potential ability to attenuate the cytotoxicity of Aβ1-42 and retard the deposition of amyloid plaques in adults with DS. However, there are conflicting data supporting an antagonist strategy to improve cognition in the presence of elevated levels of Aβ amyloidogenic peptides, as well as to prevent emergence of pyramidal neuron hyperexcitability. A major challenge to the implementation of clinical trials of targeted α7nAChR interventions in adults with DS will be the ability to detect medication-induced changes in cognition in the context of intellectual disability. The Review will consider some of the current evidence supporting both the role of the Aβ1-42-α7nAChR complex in the pathogenesis of the AD-like histopathology in adult persons with DS, and pharmacotherapeutic interventions with α7nAChR agonists.
Progress in Neuro-psychopharmacology & Biological Psychiatry | 2016
Stephen I. Deutsch; Jessica A. Burket; Andrew D. Benson; Maria R. Urbano
Array comparative genomic hybridization (array CGH) has led to the identification of microdeletions of the proximal region of chromosome 15q between breakpoints (BP) 3 or BP4 and BP5 encompassing CHRNA7, the gene encoding the α7-nicotinic acetylcholine receptor (α7nAChR) subunit. Phenotypic manifestations of persons with these microdeletions are variable and some heterozygous carriers are seemingly unaffected, consistent with their variable expressivity and incomplete penetrance. Nonetheless, the 15q13.3 deletion syndrome is associated with several neuropsychiatric disorders, including idiopathic generalized epilepsy, intellectual disability, autism spectrum disorders (ASDs) and schizophrenia. Haploinsufficient expression of CHRNA7 in this syndrome has highlighted important roles the α7nAChR plays in the developing brain and normal processes of attention, cognition, memory and behavior throughout life. Importantly, the existence of the 15q13.3 deletion syndrome contributes to an emerging literature supporting clinical trials therapeutically targeting the α7nAChR in disorders such as ASDs and schizophrenia, including the larger population of patients with no evidence of haploinsufficient expression of CHRNA7. Translational clinical trials will be facilitated by the existence of positive allosteric modulators (PAMs) of the α7nAChR that act at sites on the receptor distinct from the orthosteric site that binds acetylcholine and choline, the receptors endogenous ligands. PAMs lack intrinsic efficacy by themselves, but act where and when the endogenous ligands are released in response to relevant social and cognitive provocations to increase the likelihood they will result in α7nAChR ion channel activation.
Progress in Neuro-psychopharmacology & Biological Psychiatry | 2015
Jessica A. Burket; Andrew D. Benson; Torrian L. Green; Jerri M. Rook; Craig W. Lindsley; P. Jeffrey Conn; Stephen I. Deutsch
The NMDA receptor is a highly regulated glutamate-gated cationic channel receptor that has an important role in the regulation of sociability and cognition. The genetically-inbred Balb/c mouse has altered endogenous tone of NMDA receptor-mediated neurotransmission and is a model of impaired sociability, relevant to Autism Spectrum Disorders (ASDs). Because glycine is an obligatory co-agonist that works cooperatively with glutamate to promote opening of the ion channel, one prominent strategy to promote NMDA receptor-mediated neurotransmission involves inhibition of the glycine type 1 transporter (GlyT1). The current study evaluated the dose-dependent effects of VU0410120, a selective, high-affinity competitive GlyT1 inhibitor, on measures of sociability, cognition and stereotypic behaviors in Balb/c and Swiss Webster mice. The data show that doses of VU0410120 (i.e., 18 and 30mg/kg) that improve measures of sociability and spatial working memory in the Balb/c mouse strain elicit intense stereotypic behaviors in the Swiss Webster comparator strain (i.e., burrowing and jumping). Furthermore, the data suggest that selective GlyT1 inhibition improves sociability and spatial working memory at doses that do not worsen or elicit stereotypic behaviors in a social situation in the Balb/c strain. However, the elicitation of stereotypic behaviors in the Swiss Webster comparator strain at therapeutically relevant doses of VU0410120 suggest that genetic factors (i.e., mouse strain differences) influence sensitivity to GlyT1-elicited stereotypic behaviors, and emergence of intense stereotypic behaviors may be dose-limiting side effects of this interventional strategy.
Biochemical Pharmacology | 2015
Stephen I. Deutsch; Jessica A. Burket; Maria R. Urbano; Andrew D. Benson
Currently, there are no medications that target core deficits of social communication and restrictive, repetitive patterns of behavior in persons with autism spectrum disorders (ASDs). Adults with Down syndrome (DS) display a progressive worsening of adaptive functioning, which is associated with Alzheimers disease (AD)-like histopathological changes in brain. Similar to persons with ASDs, there are no effective medication strategies to prevent or retard the progressive worsening of adaptive functions in adults with DS. Data suggest that the α7-subunit containing nicotinic acetylcholine receptor (α7nAChR) is implicated in the pathophysiology and serves as a promising therapeutic target of these disorders. In DS, production of the amyloidogenic Aβ1-42 peptide is increased and binds to the α7nAChR or the lipid milieu associated with this receptor, causing a cascade that results in cytotoxicity and deposition of amyloid plaques. Independently of their ability to inhibit the complexing of Aβ1-42 with the α7nAChR, α7nAChR agonists and positive allosteric modulators (PAMs) also possess procognitive and neuroprotective effects in relevant in vivo and in vitro models. The procognitive and neuroprotective effects of α7nAChR agonist interventions may be due, at least in part, to stimulation of the PI3K/Akt signaling cascade, cross-talk with the Wnt/β-catenin signaling cascade and both transcriptional and non-transcriptional effects of β-catenin, and effects of transiently increased intraneuronal concentrations of Ca(2+) on metabolism and the membrane potential. Importantly, α7nAChR PAMs are particularly attractive medication candidates because they lack intrinsic efficacy and act only when and where endogenous acetylcholine is released or choline is generated.
Progress in Neuro-psychopharmacology & Biological Psychiatry | 2015
Jessica A. Burket; Andrew D. Benson; Amy H. Tang; Stephen I. Deutsch
Brain Research Bulletin | 2013
Andrew D. Benson; Jessica A. Burket; Stephen I. Deutsch
Biomedicine & Pharmacotherapy | 2014
Stephen I. Deutsch; Amy H. Tang; Jessica A. Burket; Andrew D. Benson