Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew D. Bergemann is active.

Publication


Featured researches published by Andrew D. Bergemann.


Cell | 1995

Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map

Hwai Jong Cheng; Masaru Nakamoto; Andrew D. Bergemann; John G. Flanagan

Topographic maps with a defined spatial ordering of neuronal connections are a key feature of brain organization. Such maps are believed to develop in response to complementary position-specific labels in presynaptic and postsynaptic fields. However, the complementary labeling molecules are not known. In the well-studied visual map of retinal axons projecting to the tectum, the labels are hypothesized to be in gradients, without needing large numbers of cell-specific molecules. We recently cloned ELF-1 as a ligand for Eph family receptors. Here, RNA hybridization shows matching expression gradients for ELF-1 in the tectum and its receptor Mek4 in the retina. Binding activity detected with alkaline phosphatase fusions of ELF-1 and Mek4 also reveals gradients and provides direct evidence for molecular complementarity of gradients in reciprocal fields. ELF-1 and Mek4 may therefore play roles in retinotectal development and have properties predicted of topographic mapping labels.


Neuron | 2000

Genetic Analysis of Ephrin-A2 and Ephrin-A5 Shows Their Requirement in Multiple Aspects of Retinocollicular Mapping

David A. Feldheim; Young In Kim; Andrew D. Bergemann; Jonas Frisén; Mariano Barbacid; John G. Flanagan

Ephrin-A2 and -A5 are thought to be anteroposterior mapping labels for the retinotectal/retinocollicular projection. Here, gene disruptions of both these ephrins are characterized. Focal retinal labeling reveals moderate map abnormalities when either gene is disrupted. Double heterozygotes also have a phenotype, showing an influence of absolute levels. In vitro assays indicate these ephrins are required for repellent activity in the target and also normal responsiveness in the retina. In double homozygotes, anteroposterior order is almost though not completely lost. Temporal or nasal retinal labelings reveal quantitatively similar but opposite shifts, with multiple terminations scattered widely over the target. These results indicate an axon competition mechanism for mapping, with a critical role for ephrins as anteroposterior topographic labels. Dorsoventral topography is also impaired, showing these ephrins are required in mapping both axes.


Molecular and Cellular Biology | 1992

The HeLa Pur factor binds single-stranded DNA at a specific element conserved in gene flanking regions and origins of DNA replication.

Andrew D. Bergemann; Edward M. Johnson

A major site of DNA bending is located 1.6 kb upstream of the P1 transcription start site of the human c-myc gene, near the center of a reported zone of initiation of DNA replication. A repeated, purine-rich element, termed PUR, at the bend site is specifically bound by a protein in HeLa cell nuclear extracts. This protein has specific affinity for the purine-rich single strand of the element. Methylation interference maps a pattern of specific contact points with guanosine bases in a 24-mer oligonucleotide containing the element. UV cross-linking reveals that contact is made by a polypeptide of approximately 28 kDa. The PUR element is present at origins of replication and in gene flanking regions in a variety of eukaryotes from yeasts through humans. The consensus sequence GGNNGAGGGAGARRRR has been derived. This element is present near centers of regions of two mammalian loci (human c-myc and hamster dhfr) recently reported as initiation zones for DNA replication. A 24-mer oligonucleotide representing the hamster dhfr version of the PUR element effectively competes with the human c-myc version for binding to Pur.


Molecular and Cellular Biology | 1995

ELF-2, a new member of the Eph ligand family, is segmentally expressed in mouse embryos in the region of the hindbrain and newly forming somites.

Andrew D. Bergemann; Hwai Jong Cheng; R. Brambilla; Rüdiger Klein; John G. Flanagan

The Eph receptors are the largest known family of receptor tyrosine kinases and are notable for distinctive expression patterns in the nervous system and in early vertebrate development. However, all were identified as orphan receptors, and only recently have there been descriptions of a corresponding family of ligands. We describe here a new member of the Eph ligand family, designated ELF-2 (Eph ligand family 2). The cDNA sequence for mouse ELF-2 indicates that it is a transmembrane ligand. It shows closest homology to the other known transmembrane ligand in the family, ELK-L/LERK-2/Cek5-L, with 57% identity in the extracellular domain. There is also striking homology in the cytoplasmic domain, including complete identity of the last 33 amino acids, suggesting intracellular interactions. On cell surfaces, and in a cell-free system, ELF-2 binds to three closely related Eph family receptors, Elk, Cek10 (apparent ortholog of Sek-4 and HEK2), and Cek5 (apparent ortholog of Nuk/Sek-3), all with dissociation constants of approximately 1 nM. In situ hybridization of mouse embryos shows ELF-2 RNA expression in a segmental pattern in the hindbrain region and the segmenting mesoderm. Comparable patterns have been described for Eph family receptors, including Sek-4 and Nuk/Sek-3, suggesting roles for ELF-2 in patterning these regions of the embryo.


The EMBO Journal | 1995

Membrane-bound LERK2 ligand can signal through three different Eph-related receptor tyrosine kinases.

Riccardo Brambilla; A Schnapp; F Casagranda; Juan-Pablo Labrador; Andrew D. Bergemann; John G. Flanagan; E B Pasquale; Rüdiger Klein

The Eph‐related family of receptor tyrosine kinases consists of at least 13 members, several of which display distinctive expression patterns in the developing and adult nervous system. Recently, a small family of ligands, structurally related to the B61 protein, was identified. Binding of these ligands to Eph‐related receptors did not, however, elicit measurable biological signals in cultured cells. In order to study functional interactions between B61‐related ligands and Eph‐related receptors, we constructed chimeric receptors, containing an Eph‐related ectodomain and the cytoplasmic domain of the TrkB neurotrophin receptor. Expression and activation of such chimeric receptors in NIH 3T3 cells induced transformation in focus formation assays. Membrane‐bound LERK2 ligand is shown to signal through three different Eph‐related receptors, namely Cek5, Cek10 and Elk. LERK2, however, fails to interact functionally with the Cek9 receptor. Quantitative analysis including binding assays indicates that Cek10 is the preferred LERK2 receptor. Preliminary mutagenesis of the LERK2 protein suggests a negative regulatory role for its cytoplasmic domain in LERK2 signaling.


Molecular and Cellular Biology | 1992

Sequence of cDNA comprising the human pur gene and sequence-specific single-stranded-DNA-binding properties of the encoded protein.

Andrew D. Bergemann; Zhi-Wei Ma; Edward M. Johnson

The human Pur factor binds strongly to a sequence element repeated within zones of initiation of DNA replication in several eukaryotic cells. The protein binds preferentially to the purine-rich single strand of this element, PUR. We report here the cloning and sequencing of a cDNA encoding a protein with strong affinity for the PUR element. Analysis with a series of mutated oligonucleotides defines a minimal single-stranded DNA Pur-binding element. The expressed Pur open reading frame encodes a protein of 322 amino acids. This protein, Pur alpha, contains three repeats of a consensus motif of 23 amino acids and two repeats of a second consensus motif of 26 amino acids. Near its carboxy terminus, the protein possesses an amphipathic alpha-helix and a glutamine-rich domain. The repeat region of Pur cDNA is homologous to multiple mRNA species in each of several human cell lines and tissues. The HeLa cDNA library also includes a clone encoding a related gene, Pur beta, containing a version of the 23-amino-acid consensus motif similar, but not identical, to those in Pur alpha. Results indicate a novel type of modular protein with capacity to bind repeated elements in single-stranded DNA.


Nucleic Acids Research | 2008

Whole genome exon arrays identify differential expression of alternatively spliced, cancer-related genes in lung cancer

Liqiang Xi; Andrew Feber; Vanita Gupta; Maoxin Wu; Andrew D. Bergemann; Rodney J. Landreneau; Virginia R. Litle; Arjun Pennathur; James D. Luketich; Tony E. Godfrey

Alternative processing of pre-mRNA transcripts is a major source of protein diversity in eukaryotes and has been implicated in several disease processes including cancer. In this study we have performed a genome wide analysis of alternative splicing events in lung adenocarcinoma. We found that 2369 of the 17 800 core Refseq genes appear to have alternative transcripts that are differentially expressed in lung adenocarcinoma versus normal. According to their known functions the largest subset of these genes (30.8%) is believed to be cancer related. Detailed analysis was performed for several genes using PCR, quantitative RT-PCR and DNA sequencing. We found overexpression of ERG variant 2 but not variant 1 in lung tumors and overexpression of CEACAM1 variant 1 but not variant 2 in lung tumors but not in breast or colon tumors. We also identified a novel, overexpressed variant of CDH3 and verified the existence and overexpression of a novel variant of P16 transcribed from the CDKN2A locus. These findings demonstrate how analysis of alternative pre-mRNA processing can shed additional light on differences between tumors and normal tissues as well as between different tumor types. Such studies may lead to the development of additional tools for tumor diagnosis, prognosis and therapy.


Oncogene | 1998

Ephrin-B3, a ligand for the receptor EphB3, expressed at the midline of the developing neural tube

Andrew D. Bergemann; Lee Zhang; Ming-Ko Chiang; Riccardo Brambilla; Rüdiger Klein; John G. Flanagan

The ephrins are a family of ligands that bind to Eph family receptor tyrosine kinases, and have been implicated in axon guidance and other patterning processes during vertebrate development. We describe here the identification and characterization of murine ephrin-B3. The cDNA encodes a 340 amino acid transmembrane molecule, most closely related to the two other known transmembrane ligands, ephrin-B1 and ephrin-B2. In addition to homology in their extracellular receptor binding domains, these transmembrane ligands share striking homology between their cytoplasmic domains, with 31 of the last 34 amino acids of ephrin-B3 being identical to ephrin-B2, suggesting functional interactions of the cytoplasmic tail. While most Eph family ligands are promiscuous in their interactions with Eph receptors, binding studies with the five receptors known to bind other transmembrane ligands only revealed a high affinity interaction of ephrin-B3 with EphB3, with a dissociation constant of approximately 1 nM. In situ hybridization of mouse embryos showed ephrin-B3 is expressed prominently at the dorsal and ventral midline of the neural tube, particularly in the floor plate, a structure with key functions in patterning the nervous system. The isolation of this ligand may help to elucidate the molecular basis of patterning activities at the neural tube midline.


Molecular and Cellular Neuroscience | 1996

Similarities and differences in the way transmembrane-type ligands interact with the Elk subclass of Eph receptors.

Riccardo Brambilla; Katja Brückner; Donata Orioli; Andrew D. Bergemann; John G. Flanagan; Rüdiger Klein

The Eph family of receptor tyrosine kinases and their cell surface bound ligands have been implicated in a number of developmental processes, including axon pathfinding and fasciculation, as well as patterning in the central nervous system. To better understand the complex signaling events taking place, we have undertaken a comparative analysis of ligand-receptor interactions between a subset of ligands, those that are tethered to the cell surface via a transmembrane domain, and a subset of Eph receptors, the so-called Elk subclass. Based on binding characteristics, receptor autophosphorylation, and cellular transformation assays, we find that the transmembrane-type ligands Lerk2 and Elf2 have common and specific receptors within the Elk subclass of receptors. The common receptors Cek10 and Elk bind and signal in response to Lerk2 and Elf2, whereas the Myk1 receptor is specific for Elf2. Elf2, however, fails to signal through Cek5 in a cellular transformation assay, suggesting that Lerk2 may be the preferred Cek5 ligand in vivo. A recently identified third transmembrane-type ligand, Elf3, specifically, but weakly, binds Cek10 and only induces focus formation when activated by C-terminal truncation. This suggests that the physiological Elf3 receptor may have yet to be identified. Knowledge regarding functional ligand-receptor interactions as presented in this study will be important for the design and interpretation of in vivo experiments, e.g., loss-of-function studies in transgenic mice.


The Journal of Neuroscience | 2004

Abnormal hippocampal axon bundling in EphB receptor mutant mice.

Zhi Yong Chen; Chunhua Sun; Kenneth R. Reuhl; Andrew D. Bergemann; Mark Henkemeyer; Renping Zhou

Axons travel frequently in bundles to reach their target. After arriving at the target, axon terminals defasciculate, migrate to topographically defined positions, and form synapses with appropriate target neurons. Here we present evidence that the B-type receptors of the erythropoietin-producing hepatocellular (Eph) family and a ligand, ephrin-B3, influence hippocampal axon defasciculation. The EphB receptors are expressed in the hippocampus, and the ligand, ephrin-B3, is transcribed in the lateral septum, the major subcortical target of hippocampal neurons. Ephrin-B3 promotes adhesion of hippocampal neurons to the ligand-expressing substrates in vitro, and the loss of the receptor EphB2 abrogates the effects of ephrin-B3. In mice deficient in EphB2 and EphB3, many hippocampal axons remain in bundles. This phenotype was also observed in mice that were specifically deleted for the cytoplasmic domain of EphB2. These observations indicate that the EphB receptors and their ligand regulate hippocampal axon defasciculation at the septal target, possibly through a receptor-mediated forward signaling mechanism.

Collaboration


Dive into the Andrew D. Bergemann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey T. Laitman

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Joy S. Reidenberg

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Armand L. Balboni

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Edward M. Johnson

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge