Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew D. Chalmers is active.

Publication


Featured researches published by Andrew D. Chalmers.


Journal of Cell Science | 2005

Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo

Berenika Plusa; Stephen Frankenberg; Andrew D. Chalmers; Anna-Katerina Hadjantonakis; Catherine A. Moore; Nancy Papalopulu; Virginia E. Papaioannou; David M. Glover; Magdalena Zernicka-Goetz

Generation of inside cells that develop into inner cell mass (ICM) and outside cells that develop into trophectoderm is central to the development of the early mouse embryo. Critical to this decision is the development of cell polarity and the associated asymmetric (differentiative) divisions of the 8-cell-stage blastomeres. The underlying molecular mechanisms for these events are not understood. As the Par3/aPKC complex has a role in establishing cellular polarity and division orientation in other systems, we explored its potential function in the developing mouse embryo. We show that both Par3 and aPKC adopt a polarized localization from the 8-cell stage onwards and that manipulating their function re-directs cell positioning and consequently influences cell fate. Injection of dsRNA against Par3 or mRNA for a dominant negative form of aPKC into a random blastomere at the 4-cell stage directs progeny of the injected cell into the inside part of the embryo. This appears to result from both an increased frequency by which such cells undertake differentiative divisions and their decreased probability of retaining outside positions. Thus, the natural spatial allocation of blastomere progeny can be over-ridden by downregulation of Par3 or aPKC, leading to a deceased tendency for them to remain outside and so develop into trophectoderm. In addition, this experimental approach illustrates a powerful means of manipulating gene expression in a specific clonal population of cells in the preimplantation embryo.


Development | 2005

aPKC, Crumbs3 and Lgl2 control apicobasal polarity in early vertebrate development

Andrew D. Chalmers; Michael Pambos; Julia Mason; Stephanie Lang; Christopher Wylie; Nancy Papalopulu

In early vertebrate development, apicobasally polarised blastomeres divide to produce inner non-polarised cells and outer polarised cells that follow different fates. How the polarity of these early blastomeres is established is not known. We have examined the role of Crumbs3, Lgl2 and the apical aPKC in the polarisation of frog blastomeres. Lgl2 localises to the basolateral membrane of blastomeres, while Crumbs3 localises to the apical and basolateral membranes. Overexpression aPKC and Crumbs3 expands the apical domain at the expense of the basolateral and repositions tight junctions in the new apical-basolateral interface. Loss of aPKC function causes loss of apical markers and redirects basolateral markers ectopically to the apical membrane. Cell polarity and tight junctions, but not cell adhesion, are lost and outer polarised cells become inner-like apolar cells. Overexpression of Xenopus Lgl2 phenocopies the aPKC knockout, suggesting that Lgl2 and aPKC act antagonistically. This was confirmed by showing that aPKC and Lgl2 can inhibit the localisation of each other and that Lgl2 rescues the apicalisation caused by aPKC. We conclude that an instrumental antagonistic interaction between aPKC and Lgl2 defines apicobasal polarity in early vertebrate development.


BMC Cell Biology | 2011

The MDCK variety pack: choosing the right strain

Joseph Dukes; Paul Whitley; Andrew D. Chalmers

The MDCK cell line provides a tractable model for studying protein trafficking, polarity and junctions (tight, adherens, desmosome and gap) in epithelial cells. However, there are many different strains of MDCK cells available, including the parental line, MDCK I, MDCK II, MDCK.1, MDCK.2, superdome and supertube, making it difficult for new researchers to decide which strain to use. Furthermore, there is often inadequate reporting of strain types and where cells were obtained from in the literature. This review aims to provide new researchers with a guide to the different MDCK strains and a directory of where they can be obtained. We also hope to encourage experienced researchers to report the stain and origin of their MDCK cells.


Development | 2003

Oriented cell divisions asymmetrically segregate aPKC and generate cell fate diversity in the early Xenopus embryo

Andrew D. Chalmers; Bernhard Strauss; Nancy Papalopulu

A key feature of early vertebrate development is the formation of superficial, epithelial cells that overlie non-epithelial deep cells. In Xenopus, deep and superficial cells show a range of differences, including a different competence for primary neurogenesis. We show that the two cell populations are generated during the blastula stages by perpendicularly oriented divisions. These take place during several cell divisions, in a variable pattern, but at a percentage that varies little between embryos and from one division to the next. The orientation of division correlates with cell shape suggesting that simple geometric rules may control the orientation of division in this system. We show that dividing cells are molecularly polarised such that aPKC is localised to the external, apical, membrane. Membrane localised aPKC can be seen as early as the one-cell stage and during the blastula divisions, it is preferentially inherited by superficial cells. Finally, we show that when 64-cell stage isolated blastomeres divide perpendicularly and the daughters are cultured separately, only the progeny of the cells that inherit the apical membrane turn on the bHLH gene, ESR6e. We conclude that oriented cell divisions generate the superficial and deep cells and establish cell fate diversity between them.


Developmental Cell | 2002

Intrinsic differences between the superficial and deep layers of the Xenopus ectoderm control primary neuronal differentiation

Andrew D. Chalmers; David Welchman; Nancy Papalopulu

In Xenopus, primary neurons differentiate early, in the deep layer of the neuroectoderm. In contrast, the neural precursors of the superficial layer continue to proliferate. We report that superficial layer precursors differ from deep layer precursors in that they are refractory to the neuronal-promoting activity of bHLH genes, dominant-negative X-Delta-1, FGF-8, or signals from the organizer. In this system, neuronal differentiation is guided by an early established, intrinsic, cell-autonomous difference in the competence of the precursor cells to differentiate. This difference may be controlled in part by ESR6e, a bHLH gene of the Enhancer-of-split family, which is expressed in the superficial layer of the late blastula and when expressed ectopically suppresses primary neurogenesis in the deep layer.


Current Biology | 2000

FGF-8 stimulates neuronal differentiation through FGFR-4a and interferes with mesoderm induction in Xenopus embryos

Zoë Hardcastle; Andrew D. Chalmers; Nancy Papalopulu

The role of fibroblast growth factors (FGFs) in neural induction is controversial [1,2]. Although FGF signalling has been implicated in early neural induction [3-5], a late role for FGFs in neural development is not well established. Indeed, it is thought that FGFs induce a precursor cell fate but are not able to induce neuronal differentiation or late neural markers [6-8]. It is also not known whether the same or distinct FGFs and FGF receptors (FGFRs) mediate the effects on mesoderm and neural development. We report that Xenopus embryos expressing ectopic FGF-8 develop an abundance of ectopic neurons that extend to the ventral, non-neural, ectoderm, but show no ectopic or enhanced notochord or somitic markers. FGF-8 inhibited the expression of an early mesoderm marker, Xbra, in contrast to eFGF, which induced ectopic Xbra robustly and neuronal differentiation weakly. The effect of FGF-8 on neurogenesis was blocked by dominant-negative FGFR-4a (DeltaXFGFR-4a). Endogenous neurogenesis was also blocked by DeltaXFGFR-4a and less efficiently by dominant-negative FGFR-1 (XFD), suggesting that it depends preferentially on signalling through FGFR-4a. The results suggest that FGF-8 and FGFR-4a signalling promotes neurogenesis and, unlike other FGFs, FGF-8 interferes with mesoderm induction. Thus, different FGFs show specificity for mesoderm induction versus neurogenesis and this may be mediated, at least in part, by the use of distinct receptors.


Biochemical Journal | 2010

The N-terminal RASSF family: a new group of Ras-association-domain-containing proteins, with emerging links to cancer formation.

Victoria Sherwood; Asha Recino; Alex C. Jeffries; Andrew Ward; Andrew D. Chalmers

The RASSF (Ras-association domain family) has recently gained several new members and now contains ten proteins (RASSF1-10), several of which are potential tumour suppressors. The family can be split into two groups, the classical RASSF proteins (RASSF1-6) and the four recently added N-terminal RASSF proteins (RASSF7-10). The N-terminal RASSF proteins have a number of differences from the classical RASSF members and represent a newly defined set of potential Ras effectors. They have been linked to key biological processes, including cell death, proliferation, microtubule stability, promoter methylation, vesicle trafficking and response to hypoxia. Two members of the N-terminal RASSF family have also been highlighted as potential tumour suppressors. The present review will summarize what is known about the N-terminal RASSF proteins, addressing their function and possible links to cancer formation. It will also compare the N-terminal RASSF proteins with the classical RASSF proteins and ask whether the N-terminal RASSF proteins should be considered as genuine members or imposters in the RASSF family.


Molecular Biology of the Cell | 2008

RASSF7 Is a Member of a New Family of RAS Association Domain–containing Proteins and Is Required for Completing Mitosis

Victoria Sherwood; Ria Manbodh; Carol Sheppard; Andrew D. Chalmers

Mitosis is a fundamental feature of all cellular organisms. It must be tightly regulated to allow normal tissue growth and to prevent cancer formation. Here, we identify a new protein that is required for mitosis. We show that the Ras association (RA) domain-containing protein, RASSF7, is part of an evolutionarily conserved group of four proteins. These are RASSF7, RASSF8, and two new RASSF proteins P-CIP1/RASSF9 and RASSF10. We call this group the N-terminal RASSF family. We analyzed the function of Xenopus RASSF7. RASSF7 was found to be expressed in several embryonic tissues including the skin, eyes, and neural tube. Knocking down its function led to cells failing to form a mitotic spindle and arresting in mitosis. This caused nuclear breakdown, apoptosis, and a striking loss of tissue architecture in the neural tube. Consistent with a role in spindle formation, RASSF7 protein was found to localize to the centrosome. This localization occurred in a microtubule-dependent manner, demonstrating that there is a mutually dependant relationship between RASSF7 localization and spindle formation. Thus RASSF7, the first member of the N-terminal RASSF family to be functionally analyzed, is a centrosome-associated protein required to form a spindle and complete mitosis in the neural tube.


Oncogene | 2010

The RASSF8 candidate tumor suppressor inhibits cell growth and regulates the Wnt and NF-κB signaling pathways

F E Lock; N Underhill-Day; Thomas L. Dunwell; D Matallanas; Wendy N. Cooper; Luke B. Hesson; Asha Recino; Andrew Ward; Tatiana V. Pavlova; Eugene R. Zabarovsky; M M Grant; Eamonn R. Maher; Andrew D. Chalmers; W Kolch; Farida Latif

The Ras-assocation domain family (RASSF) of tumor suppressor proteins until recently contained six proteins named RASSF1–6. Recently, four novel family members, RASSF7–10, have been identified by homology searches for RA-domain-containing proteins. These additional RASSF members are divergent and structurally distinct from RASSF1–6, containing an N-terminal RA domain and lacking the Sav/RASSF/Hpo (SARAH) domain. Here, we show that RASSF8 is ubiquitously expressed throughout the murine embryo and in normal human adult tissues. Functionally, RNAi-mediated knockdown of RASSF8 in non-small-cell lung cancer (NSCLC) cell lines, increased anchorage-independent growth in soft agar and enhanced tumor growth in severe combined immunodeficiency (SCID) mice. Furthermore, EdU staining of RASSF8-depleted cells showed growth suppression in a manner dependent on contact inhibition. We show that endogenous RASSF8 is not only found in the nucleus, but is also membrane associated at sites of cell–cell adhesion, co-localizing with the adherens junction (AJ) component β-catenin and binding to E-cadherin. Following RASSF8 depletion in two different lung cancer cell lines using alternative small interfering RNA (siRNA) sequences, we show that AJs are destabilized and E-cadherin is lost from the cell membrane. The AJ components β-catenin and p65 are also lost from sites of cell–cell contact and are relocalized to the nucleus with a concomitant increase in β-catenin-dependent and nuclear factor-κB (NF-κB)-dependent signaling following RASSF8 depletion. RASSF8 may also be required to maintain actin -cytoskeletal organization since immunofluorescence analysis shows a striking disorganization of the actin- cytoskeleton following RASSF8 depletion. Accordingly, scratch wound healing studies show increased cellular migration in RASSF8-deficient cells. These results implicate RASSF8 as a tumor suppressor gene that is essential for maintaining AJs function in epithelial cells and have a role in epithelial cell migration.


Mechanisms of Development | 2006

Grainyhead-like 3, a transcription factor identified in a microarray screen, promotes the specification of the superficial layer of the embryonic epidermis.

Andrew D. Chalmers; Kim Lachani; Yongchol Shin; Victoria Sherwood; Ken W.Y. Cho; Nancy Papalopulu

The Xenopus ectoderm consists of two populations of cells, superficial polarised epithelial cells and deep, non-epithelial cells. These two cell types differ in their developmental fate. In the neural ectoderm, primary neurons are derived only from the deep cells. In the epidermal ectoderm, superficial cells express high levels of differentiation markers, while most of the deep cells do not differentiate until later when they produce the stratified adult epidermis. However, few molecular differences are known between the deep and superficial cells. Here, we have undertaken a systematic approach to identify genes that show layer-restricted expression by microarray analysis of deep and superficial cells at the gastrula stage, followed by wholemount in situ hybridisation. We have identified 32 differentially expressed genes, of which 26 show higher expression in the superficial layer and 6 in the deep layer and describe their expression at the gastrula and neurula stage. One of the identified genes is the transcription factor Grhl3, which we found to be expressed in the superficial layer of the gastrula ectoderm and the neurula epidermis. By using markers identified in this work, we show that Grlh3 promotes superficial gene expression in the deep layer of the epidermis. Concomitantly, deep layer specific genes are switched off, showing that Grlh3 can promote deep cells to take on a superficial cell identity in the embryonic epidermis.

Collaboration


Dive into the Andrew D. Chalmers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farida Latif

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge