Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew D. Luster is active.

Publication


Featured researches published by Andrew D. Luster.


Nature | 1999

MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions

Robert E. Gerszten; Eduardo A. Garcia-Zepeda; Yaw-Chyn Lim; Masayuki Yoshida; Han A. Ding; Michael A. Gimbrone; Andrew D. Luster; Francis W. Luscinskas; Anthony Rosenzweig

Monocytes contribute to the development of atherosclerotic lesions in mouse models. The chemoattractant proteins (chemokines), monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8), are found in human atheroma, and mice lacking receptors for these chemokines are less susceptible to atherosclerosis and have fewer monocytes in vascular lesions. Although MCP-1 has a powerful effect on monocytes, IL-8 is thought to act predominantly on neutrophils and it is unclear howit could recruit monocytes. Here we investigate the ability of chemokines to control the interaction of monocytes under flow conditions with vascular endothelium that has been transduced to express specific leukocyte-adherence receptors. We find that MCP-1 and IL-8 can each rapidly cause rolling monocytes to adhere firmly onto monolayers expressing E-selectin, whereas related chemokines do not. These effects do not correlate with either the induction of a calcium transient or chemotaxis. We conclude that chemokines are important modulators of monocyte–endothelial interactions under flow conditions. Moreover, our finding that IL-8 is a powerful trigger for firm adhesion of monocytes to vascular endothelium reveals an unexpected role for this chemokine in monocyte recruitment.


Journal of Immunology | 2002

IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking.

Jennifer H. Dufour; Michelle Dziejman; Michael T. Liu; Josephine H. Leung; Thomas E. Lane; Andrew D. Luster

IFN-γ-inducible protein 10 (IP-10, CXCL10), a chemokine secreted from cells stimulated with type I and II IFNs and LPS, is a chemoattractant for activated T cells. Expression of IP-10 is seen in many Th1-type inflammatory diseases, where it is thought to play an important role in recruiting activated T cells into sites of tissue inflammation. To determine the in vivo function of IP-10, we constructed an IP-10-deficient mouse (IP-10−/−) by targeted gene disruption. Immunological analysis revealed that IP-10−/− mice had impaired T cell responses. T cell proliferation to allogeneic and antigenic stimulation and IFN-γ secretion in response to antigenic challenge were impaired in IP-10−/− mice. In addition, IP-10−/− mice exhibited an impaired contact hypersensitivity response, characterized by decreased ear swelling and reduced inflammatory cell infiltrates. T cells recovered from draining lymph nodes also had a decreased proliferative response to Ag restimulation. Furthermore, IP-10−/− mice infected with a neurotropic mouse hepatitis virus had an impaired ability to control viral replication in the brain. This was associated with decreased recruitment of CD4+ and CD8+ lymphocytes into the brain, reduced levels of IFN-γ and the IFN-γ-induced chemokines monokine induced by IFN-γ (Mig, CXCL9) and IFN-inducible T cell α chemoattractant (I-TAC, CXCL11) in the brain, decreased numbers of virus-specific IFN-γ-secreting CD8+ cells in the spleen, and reduced levels of demyelination in the CNS. Taken together, our data suggest a role for IP-10 in both effector T cell generation and trafficking in vivo.


Nature | 2005

In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment.

Dorothy A. Sipkins; Xunbin Wei; Juwell Wu; Judith Runnels; Daniel Côté; Terry K. Means; Andrew D. Luster; David T. Scadden; Charles P. Lin

The organization of cellular niches is known to have a key role in regulating normal stem cell differentiation and regeneration, but relatively little is known about the architecture of microenvironments that support malignant metastasis. Using dynamic in vivo confocal imaging, here we show that murine bone marrow contains unique anatomic regions defined by specialized endothelium. This vasculature expresses the adhesion molecule E-selectin and the chemoattractant stromal-cell-derived factor 1 (SDF-1) in discrete, discontinuous areas that influence the homing of a variety of tumour cell lines. Disruption of the interactions between SDF-1 and its receptor CXCR4 inhibits the homing of Nalm-6 cells (an acute lymphoblastic leukaemia cell line) to these vessels. Further studies revealed that circulating leukaemic cells can engraft around these vessels, suggesting that this molecularly distinct vasculature demarcates a microenvironment for early metastatic tumour spread in bone marrow. Finally, purified haematopoietic stem/progenitor cells and lymphocytes also localize to the same microdomains, indicating that this vasculature might also function in benign states to demarcate specific portals for the entry of cells into the marrow space. Specialized vascular structures therefore appear to delineate a microenvironment with unique physiology that can be exploited by circulating malignant cells.


Journal of Clinical Investigation | 2005

Human lupus autoantibody–DNA complexes activate DCs through cooperation of CD32 and TLR9

Terry K. Means; Eicke Latz; Fumitaka Hayashi; Mandakolathur R. Murali; Douglas T. Golenbock; Andrew D. Luster

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by pathogenic autoantibodies against nucleoproteins and DNA. Here we show that DNA-containing immune complexes (ICs) within lupus serum (SLE-ICs), but not protein-containing ICs from other autoimmune rheumatic diseases, stimulates plasmacytoid DCs (PDCs) to produce cytokines and chemokines via a cooperative interaction between Toll-like receptor 9 (TLR9) and FcgammaRIIa (CD32). SLE-ICs transiently colocalized to a subcellular compartment containing CD32 and TLR9, and CD32+, but not CD32-, PDCs internalized and responded to SLE-ICs. Our findings demonstrate a novel functional interaction between Fc receptors and TLRs, defining a pathway in which CD32 delivers SLE-ICs to intracellular lysosomes containing TLR9, inducing a signaling cascade leading to PDC activation. These data demonstrate that endogenous DNA-containing autoantibody complexes found in the serum of patients with SLE activate the innate immune system and suggest a novel mechanism whereby these ICs contribute to the pathogenesis of this autoimmune disease.


Nature Medicine | 2007

Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease

Joseph El Khoury; Michelle Toft; Suzanne E. Hickman; Terry K. Means; Kinya Terada; Changiz Geula; Andrew D. Luster

Microglia are the principal immune cells of the brain. In Alzheimer disease, these brain mononuclear phagocytes are recruited from the blood and accumulate in senile plaques. However, the role of microglia in Alzheimer disease has not been resolved. Microglia may be neuroprotective by phagocytosing amyloid-β (Aβ), but their activation and the secretion of neurotoxins may also cause neurodegeneration. Ccr2 is a chemokine receptor expressed on microglia, which mediates the accumulation of mononuclear phagocytes at sites of inflammation. Here we show that Ccr2 deficiency accelerates early disease progression and markedly impairs microglial accumulation in a transgenic mouse model of Alzheimer disease (Tg2576). Alzheimer disease mice deficient in Ccr2 accumulated Aβ earlier and died prematurely, in a manner that correlated with Ccr2 gene dosage, indicating that absence of early microglial accumulation leads to decreased Aβ clearance and increased mortality. Thus, Ccr2-dependent microglial accumulation plays a protective role in the early stages of Alzheimer disease by promoting Aβ clearance.


Nature | 2007

Chitin induces accumulation in tissue of innate immune cells associated with allergy

Tiffany A. Reese; Hong-Erh Liang; AndrewN M. Tager; Andrew D. Luster; Nico van Rooijen; David Voehringer; Richard M. Locksley

Allergic and parasitic worm immunity is characterized by infiltration of tissues with interleukin (IL)-4- and IL-13-expressing cells, including T-helper-2 cells, eosinophils and basophils. Tissue macrophages assume a distinct phenotype, designated alternatively activated macrophages. Relatively little is known about the factors that trigger these host responses. Chitin, a widespread environmental biopolymer of N-acetyl-β-d-glucosamine, provides structural rigidity to fungi, crustaceans, helminths and insects. Here, we show that chitin induces the accumulation in tissue of IL-4-expressing innate immune cells, including eosinophils and basophils, when given to mice. Tissue infiltration was unaffected by the absence of Toll-like-receptor-mediated lipopolysaccharide recognition but did not occur if the injected chitin was pre-treated with the IL-4- and IL-13-inducible mammalian chitinase, AMCase, or if the chitin was injected into mice that overexpressed AMCase. Chitin mediated alternative macrophage activation in vivo and the production of leukotriene B4, which was required for optimal immune cell recruitment. Chitin is a recognition element for tissue infiltration by innate cells implicated in allergic and helminth immunity and this process can be negatively regulated by a vertebrate chitinase.


Nature Medicine | 2004

Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways

Harry Björkbacka; Vidya V. Kunjathoor; Kathryn J. Moore; Stephanie L. Koehn; Christine M. Ordija; Melinda A. Lee; Terry K. Means; Kristen A. Halmen; Andrew D. Luster; Douglas T. Golenbock; Mason W. Freeman

Atherosclerosis, the leading cause of death in developed countries, has been linked to hypercholesterolemia for decades. More recently, atherosclerotic lesion progression has been shown to depend on persistent, chronic inflammation in the artery wall. Although several studies have implicated infectious agents in this process, the role of infection in atherosclerosis remains controversial. Because the involvement of monocytes and macrophages in the pathogenesis of atherosclerosis is well established, we investigated the possibility that macrophage innate immunity signaling pathways normally activated by pathogens might also be activated in response to hyperlipidemia. We examined atherosclerotic lesion development in uninfected, hyperlipidemic mice lacking expression of either lipopolysaccharide (LPS) receptor CD14 or myeloid differentiation protein-88 (MyD88), which transduces cell signaling events downstream of the Toll-like receptors (TLRs), as well as receptors for interleukin-1 (IL-1) and IL-18. Whereas the MyD88-deficient mice evinced a marked reduction in early atherosclerosis, mice deficient in CD14 had no decrease in early lesion development. Inactivation of the MyD88 pathway led to a reduction in atherosclerosis through a decrease in macrophage recruitment to the artery wall that was associated with reduced chemokine levels. These findings link elevated serum lipid levels to a proinflammatory signaling cascade that is also engaged by microbial pathogens.


Proceedings of the National Academy of Sciences of the United States of America | 2003

A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors

Joshua B. Rubin; Andrew L. Kung; Robyn S. Klein; Jennifer A. Chan; Yanping Sun; Karl Schmidt; Mark W. Kieran; Andrew D. Luster; Rosalind A. Segal

The vast majority of brain tumors in adults exhibit glial characteristics. Brain tumors in children are diverse: Many have neuronal characteristics, whereas others have glial features. Here we show that activation of the Gi protein-coupled receptor CXCR4 is critical for the growth of both malignant neuronal and glial tumors. Systemic administration of CXCR4 antagonist AMD 3100 inhibits growth of intracranial glioblastoma and medulloblastoma xenografts by increasing apoptosis and decreasing the proliferation of tumor cells. This reflects the ability of AMD 3100 to reduce the activation of extracellular signal-regulated kinases 1 and 2 and Akt, all of which are pathways downstream of CXCR4 that promote survival, proliferation, and migration. These studies (i) demonstrate that CXCR4 is critical to the progression of diverse brain malignances and (ii) provide a scientific rationale for clinical evaluation of AMD 3100 in treating both adults and children with malignant brain tumors.


Annual Review of Immunology | 2014

Chemokines and Chemokine Receptors: Positioning Cells for Host Defense and Immunity

Jason W. Griffith; Caroline L. Sokol; Andrew D. Luster

Chemokines are chemotactic cytokines that control the migratory patterns and positioning of all immune cells. Although chemokines were initially appreciated as important mediators of acute inflammation, we now know that this complex system of approximately 50 endogenous chemokine ligands and 20 G protein-coupled seven-transmembrane signaling receptors is also critical for the generation of primary and secondary adaptive cellular and humoral immune responses. Recent studies demonstrate important roles for the chemokine system in the priming of naive T cells, in cell fate decisions such as effector and memory cell differentiation, and in regulatory T cell function. In this review, we focus on recent advances in understanding how the chemokine system orchestrates immune cell migration and positioning at the organismic level in homeostasis, in acute inflammation, and during the generation and regulation of adoptive primary and secondary immune responses in the lymphoid system and peripheral nonlymphoid tissue.


Nature Medicine | 2008

The Lysophosphatidic Acid Receptor LPA1 Links Pulmonary Fibrosis to Lung Injury by Mediating Fibroblast Recruitment and Vascular Leak

Andrew M. Tager; Peter LaCamera; Barry S. Shea; Gabriele S. V. Campanella; Moisés Selman; Zhenwen Zhao; Vasiliy V. Polosukhin; John C. Wain; Banu A Karimi-Shah; Nancy D. Kim; William K. Hart; Annie Pardo; Timothy S. Blackwell; Yan Xu; Jerold Chun; Andrew D. Luster

Aberrant wound-healing responses to injury have been implicated in the development of pulmonary fibrosis, but the mediators directing these pathologic responses have yet to be fully identified. We show that lysophosphatidic acid levels increase in bronchoalveolar lavage fluid following lung injury in the bleomycin model of pulmonary fibrosis, and that mice lacking one of its receptors, LPA1, are markedly protected from fibrosis and mortality in this model. The absence of LPA1 led to reduced fibroblast recruitment and vascular leak, two responses that may be excessive when injury leads to fibrosis rather than to repair, whereas leukocyte recruitment was preserved during the first week after injury. In persons with idiopathic pulmonary fibrosis, lysophosphatidic acid levels in bronchoalveolar lavage fluid were also increased, and inhibition of LPA1 markedly reduced fibroblast responses to the chemotactic activity of this fluid. LPA1 therefore represents a new therapeutic target for diseases in which aberrant responses to injury contribute to fibrosis, such as idiopathic pulmonary fibrosis.

Collaboration


Dive into the Andrew D. Luster's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig M. Lilly

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge