Andrew D. McAinsh
University of Warwick
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew D. McAinsh.
Journal of Cell Biology | 2009
Alberto Toso; Jennifer Winter; Ainslie J. Garrod; Ana C. Amaro; Patrick Meraldi; Andrew D. McAinsh
In animal somatic cells, bipolar spindle formation requires separation of the centrosome-based spindle poles. Centrosome separation relies on multiple pathways, including cortical forces and antiparallel microtubule (MT) sliding, which are two activities controlled by the protein kinase aurora A. We previously found that depletion of the human kinetochore protein Mcm21RCENP-O results in monopolar spindles, raising the question as to whether kinetochores contribute to centrosome separation. In this study, we demonstrate that kinetochores promote centrosome separation after nuclear envelope breakdown by exerting a pushing force on the kinetochore fibers (k-fibers), which are bundles of MTs that connect kinetochores to centrosomes. This force is based on poleward MT flux, which incorporates new tubulin subunits at the plus ends of k-fibers and requires stable k-fibers to drive centrosomes apart. This kinetochore-dependent force becomes essential for centrosome separation if aurora A is inhibited. We conclude that two mechanisms control centrosome separation during prometaphase: an aurora A–dependent pathway and a kinetochore-dependent pathway that relies on k-fiber–generated pushing forces.
Nature Cell Biology | 2010
Ana C. Amaro; Catarina P. Samora; René Holtackers; Enxiu Wang; Isabel J. Kingston; Maria Alonso; Michael A. Lampson; Andrew D. McAinsh; Patrick Meraldi
Chromosome segregation in metazoans requires the alignment of sister kinetochores on the metaphase plate. During chromosome alignment, bioriented kinetochores move chromosomes by regulating the plus-end dynamics of the attached microtubules. The bundles of kinetochore-bound microtubules alternate between growth and shrinkage, leading to regular oscillations along the spindle axis. However, the molecular mechanisms that coordinate microtubule plus-end dynamics remain unknown. Here we show that centromere protein (CENP)-H, a subunit of the CENP-A nucleosome-associated and CENP-A distal complexes (CENP-A NAC/CAD), is essential for this coordination, because kinetochores lacking CENP-H establish bioriented attachments but fail to generate regular oscillations, as a result of an uncontrolled rate of microtubule plus-end turnover. These alterations lead to rapid erratic movements that disrupt metaphase plate organization. We also show that the abundance of the CENP-A NAC/CAD subunits CENP-H and CENP-I dynamically change on individual sister kinetochores in vivo, because they preferentially bind the sister kinetochore attached to growing microtubules, and that one other subunit, CENP-Q, binds microtubules in vitro. We therefore propose that CENP-A NAC/CAD is a direct regulator of kinetochore-microtubule dynamics, which physically links centromeric DNA to microtubule plus ends.
PLOS ONE | 2007
Marcin R. Przewloka; Wei Zhang; Patrícia da Silva Campelo Costa; Vincent Archambault; Pier Paolo D'Avino; Kathryn S. Lilley; Ernest D. Laue; Andrew D. McAinsh; David M. Glover
Background Kinetochores are large multiprotein complexes indispensable for proper chromosome segregation. Although Drosophila is a classical model organism for studies of chromosome segregation, little is known about the organization of its kinetochores. Methodology/Principal Findings We employed bioinformatics, proteomics and cell biology methods to identify and analyze the interaction network of Drosophila kinetochore proteins. We have shown that three Drosophila proteins highly diverged from human and yeast Ndc80, Nuf2 and Mis12 are indeed their orthologues. Affinity purification of these proteins from cultured Drosophila cells identified a further five interacting proteins with weak similarity to subunits of the SPC105/KNL-1, MIND/MIS12 and NDC80 kinetochore complexes together with known kinetochore associated proteins such as dynein/dynactin, spindle assembly checkpoint components and heterochromatin proteins. All eight kinetochore complex proteins were present at the kinetochore during mitosis and MIND/MIS12 complex proteins were also centromeric during interphase. Their down-regulation led to dramatic defects in chromosome congression/segregation frequently accompanied by mitotic spindle elongation. The systematic depletion of each individual protein allowed us to establish dependency relationships for their recruitment onto the kinetochore. This revealed the sequential recruitment of individual members of first, the MIND/MIS12 and then, NDC80 complex. Conclusions/Significance The Drosophila MIND/MIS12 and NDC80 complexes and the Spc105 protein, like their counterparts from other eukaryotic species, are essential for chromosome congression and segregation, but are highly diverged in sequence. Hierarchical dependence relationships of individual proteins regulate the assembly of Drosophila kinetochore complexes in a manner similar, but not identical, to other organisms.
Journal of Cell Biology | 2010
Khuloud Jaqaman; Emma M. King; Ana C. Amaro; Jennifer R. Winter; Jonas F. Dorn; Hunter L. Elliott; Nunu Mchedlishvili; Sarah E. McClelland; Iain M. Porter; Markus Posch; Alberto Toso; Gaudenz Danuser; Andrew D. McAinsh; Patrick Meraldi; Jason R. Swedlow
An automated, quantitative 4D image analysis method is used to track kinetochore dynamics in metaphase cells.
Nature Cell Biology | 2009
Marcus Braun; Douglas R. Drummond; Robert A. Cross; Andrew D. McAinsh
The dynamic organization of microtubules into parallel arrays allows interphase cells to set up multi-lane highways for intracellular transport and M-phase cells to build the mitotic and meiotic spindles. Here we show that a minimally reconstituted system composed of Klp2, a kinesin-14 from the fission yeast Schizosaccharomyces pombe, together with microtubules assembled from purified S. pombe tubulin, autonomously assembles bundles of parallel microtubules. Bundles form by an ATP-dependent sorting mechanism that requires the full-length Klp2 motor. By this mechanism, antiparallel-overlapped microtubules slide over one another until they dissociate from the bundles, whereas parallel-overlapped microtubules are selectively trapped by an energy-dissipating force-balance mechanism. Klp2-driven microtubule sorting provides a robust pathway for the organization of microtubules into parallel arrays. In vivo evidence indicates that Klp2 is required for the proper organization of S. pombe interphase microtubules into bipolar arrays of parallel-overlapped microtubules, suggesting that kinesin-14-dependent microtubule sorting may have wide biological importance.
Nature Cell Biology | 2011
Catarina P. Samora; Binyam Mogessie; Leslie Conway; Jennifer L. Ross; Anne Straube; Andrew D. McAinsh
Correct positioning of the mitotic spindle is critical to establish the correct cell-division plane. Spindle positioning involves capture of astral microtubules and generation of pushing/pulling forces at the cell cortex. Here we show that the tau-related protein MAP4 and the microtubule rescue factor CLASP1 are essential for maintaining spindle position and the correct cell-division axis in human cells. We propose that CLASP1 is required to correctly capture astral microtubules, whereas MAP4 prevents engagement of excess dynein motors, thereby protecting the system from force imbalance. Consistent with this, MAP4 physically interacts with dynein–dynactin in vivo and inhibits dynein-mediated microtubule sliding in vitro. Depletion of MAP4, but not CLASP1, causes spindle misorientation in the vertical plane, demonstrating that force generators are under spatial control. These findings have wide biological importance, because spindle positioning is essential during embryogenesis and stem-cell homeostasis.
The EMBO Journal | 2007
Sarah E. McClelland; Satyarebala Borusu; Ana C. Amaro; Jennifer Winter; Mukta Belwal; Andrew D. McAinsh; Patrick Meraldi
Kinetochores are complex protein machines that link chromosomes to spindle microtubules and contain a structural core composed of two conserved protein–protein interaction networks: the well‐characterized KMN (KNL1/MIND/NDC80) and the recently identified CENP‐A NAC/CAD. Here we show that the CENP‐A NAC/CAD subunits can be assigned to one of two different functional classes; depletion of Class I proteins (Mcm21RCENP−O and Fta1RCENP−L) causes a failure in bipolar spindle assembly. In contrast, depletion of Class II proteins (CENP‐H, Chl4RCENP−N, CENP‐I and Sim4RCENP−K) prevents binding of Class I proteins and causes chromosome congression defects, but does not perturb spindle formation. Co‐depletion of Class I and Class II proteins restores spindle bipolarity, suggesting that Class I proteins regulate or counteract the function of Class II proteins. We also demonstrate that CENP‐A NAC/CAD and KMN regulate kinetochore–microtubule attachments independently, even though CENP‐A NAC/CAD can modulate NDC80 levels at kinetochores. Based on our results, we propose that the cooperative action of CENP‐A NAC/CAD subunits and the KMN network drives efficient chromosome segregation and bipolar spindle assembly during mitosis.
Nature Reviews Molecular Cell Biology | 2014
Robert A. Cross; Andrew D. McAinsh
Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation.
Current Biology | 2014
María Dolores Vázquez-Novelle; Laurent Sansregret; Amalie E. Dick; Chris A. Smith; Andrew D. McAinsh; Daniel W. Gerlich; Mark Petronczki
Summary Two mechanisms safeguard the bipolar attachment of chromosomes in mitosis. A correction mechanism destabilizes erroneous attachments that do not generate tension across sister kinetochores [1]. In response to unattached kinetochores, the mitotic checkpoint delays anaphase onset by inhibiting the anaphase-promoting complex/cyclosome (APC/CCdc20) [2]. Upon satisfaction of both pathways, the APC/CCdc20 elicits the degradation of securin and cyclin B [3]. This liberates separase triggering sister chromatid disjunction and inactivates cyclin-dependent kinase 1 (Cdk1) causing mitotic exit. How eukaryotic cells avoid the engagement of attachment monitoring mechanisms when sister chromatids split and tension is lost at anaphase is poorly understood [4]. Here we show that Cdk1 inactivation disables mitotic checkpoint surveillance at anaphase onset in human cells. Preventing cyclin B1 proteolysis at the time of sister chromatid disjunction destabilizes kinetochore-microtubule attachments and triggers the engagement of the mitotic checkpoint. As a consequence, mitotic checkpoint proteins accumulate at anaphase kinetochores, the APC/CCdc20 is inhibited, and securin reaccumulates. Conversely, acute pharmacological inhibition of Cdk1 abrogates the engagement and maintenance of the mitotic checkpoint upon microtubule depolymerization. We propose that the simultaneous destruction of securin and cyclin B elicited by the APC/CCdc20 couples chromosome segregation to the dissolution of attachment monitoring mechanisms during mitotic exit.
Journal of Cell Science | 2011
Daniela Hellwig; Stephan Emmerth; Tobias Ulbricht; Volker Döring; Christian Hoischen; Ronny Martin; Catarina P. Samora; Andrew D. McAinsh; Christopher W. Carroll; Aaron F. Straight; Patrick Meraldi; Stephan Diekmann
Accurate chromosome segregation requires the assembly of kinetochores, multiprotein complexes that assemble on the centromere of each sister chromatid. A key step in this process involves binding of the constitutive centromere-associated network (CCAN) to CENP-A, the histone H3 variant that constitutes centromeric nucleosomes. This network is proposed to operate as a persistent structural scaffold for assembly of the outer kinetochore during mitosis. Here, we show by fluorescence resonance energy transfer (FRET) that the N-terminus of CENP-N lies in close proximity to the N-terminus of CENP-A in vivo, consistent with in vitro data showing direct binding of CENP-N to CENP-A. Furthermore, we demonstrate in living cells that CENP-N is bound to kinetochores during S phase and G2, but is largely absent from kinetochores during mitosis and G1. By measuring the dynamics of kinetochore binding, we reveal that CENP-N undergoes rapid exchange in G1 until the middle of S phase when it becomes stably associated with kinetochores. The majority of CENP-N is loaded during S phase and dissociates again during G2. We propose a model in which CENP-N functions as a fidelity factor during centromeric replication and reveal that the CCAN network is considerably more dynamic than previously appreciated.