Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew D. Millard is active.

Publication


Featured researches published by Andrew D. Millard.


Bacteriophage | 2011

Phages in nature.

Martha R. J. Clokie; Andrew D. Millard; Andrey V. Letarov; Shaun Heaphy

Phages are the most abundant organisms in the biosphere and they are a ubiquitous feature of prokaryotic existence. A bacteriophage is a virus which infects a bacterium. Archaea are also infected by viruses, whether these should be referred to as ‘phages’ is debatable, but they are included as such in the scope this article. Phage have been of interest to scientists as tools to understand fundamental molecular biology, as vectors of horizontal gene transfer and drivers of bacterial evolution, as sources of diagnostic and genetic tools, and as novel therapeutic agents. Unraveling the biology of phages and their relationship with their hosts is key to understanding microbial systems and their exploitation. In this article we describe the roles of phages in different host systems and show how modeling, microscopy, isolation, genomic and metagenomic based approaches have come together recently to provide unparalleled insights into these small but vital constituents of the microbial world.


Journal of Bacteriology | 2005

The Genome of S-PM2, a “Photosynthetic” T4-Type Bacteriophage That Infects Marine Synechococcus Strains

Nicholas H. Mann; Martha R. J. Clokie; Andrew D. Millard; Annabel Cook; William H. Wilson; P. J. Wheatley; Andrey V. Letarov; Henry M. Krisch

Bacteriophage S-PM2 infects several strains of the abundant and ecologically important marine cyanobacterium Synechococcus. A large lytic phage with an isometric icosahedral head, S-PM2 has a contractile tail and by this criterion is classified as a myovirus (1). The linear, circularly permuted, 196,280-bp double-stranded DNA genome of S-PM2 contains 37.8% G+C residues. It encodes 239 open reading frames (ORFs) and 25 tRNAs. Of these ORFs, 19 appear to encode proteins associated with the cell envelope, including a putative S-layer-associated protein. Twenty additional S-PM2 ORFs have homologues in the genomes of their cyanobacterial hosts. There is a group I self-splicing intron within the gene encoding the D1 protein. A total of 40 ORFs, organized into discrete clusters, encode homologues of T4 proteins involved in virion morphogenesis, nucleotide metabolism, gene regulation, and DNA replication and repair. The S-PM2 genome encodes a few surprisingly large (e.g., 3,779 amino acids) ORFs of unknown function. Our analysis of the S-PM2 genome suggests that many of the unknown S-PM2 functions may be involved in the adaptation of the metabolism of the host cell to the requirements of phage infection. This hypothesis originates from the identification of multiple phage-mediated modifications of the hosts photosynthetic apparatus that appear to be essential for maintaining energy production during the lytic cycle.


Mbio | 2010

Dynamic Distribution of SeqA Protein across the Chromosome of Escherichia coli K-12

Marı́a Antonia Sánchez-Romero; Stephen J. W. Busby; Nigel P. Dyer; Sascha Ott; Andrew D. Millard; David C. Grainger

ABSTRACT The bacterial SeqA protein binds to hemi-methylated GATC sequences that arise in newly synthesized DNA upon passage of the replication machinery. In Escherichia coli K-12, the single replication origin oriC is a well-characterized target for SeqA, which binds to multiple hemi-methylated GATC sequences immediately after replication has initiated. This sequesters oriC, thereby preventing reinitiation of replication. However, the genome-wide DNA binding properties of SeqA are unknown, and hence, here, we describe a study of the binding of SeqA across the entire Escherichia coli K-12 chromosome, using chromatin immunoprecipitation in combination with DNA microarrays. Our data show that SeqA binding correlates with the frequency and spacing of GATC sequences across the entire genome. Less SeqA is found in highly transcribed regions, as well as in the ter macrodomain. Using synchronized cultures, we show that SeqA distribution differs with the cell cycle. SeqA remains bound to some targets after replication has ceased, and these targets locate to genes encoding factors involved in nucleotide metabolism, chromosome replication, and methyl transfer. IMPORTANCE DNA replication in bacteria is a highly regulated process. In many bacteria, a protein called SeqA plays a key role by binding to newly replicated DNA. Thus, at the origin of DNA replication, SeqA binding blocks premature reinitiation of replication rounds. Although most investigators have focused on the role of SeqA at replication origins, it has long been suspected that SeqA has a more pervasive role. In this study, we describe how we have been able to identify scores of targets, across the entire Escherichia coli chromosome, to which SeqA binds. Using synchronously growing cells, we show that the distribution of SeqA between these targets alters as replication of the chromosome progresses. This suggests that sequential changes in SeqA distribution orchestrate a program of gene expression that ensures coordinated DNA replication and cell division. DNA replication in bacteria is a highly regulated process. In many bacteria, a protein called SeqA plays a key role by binding to newly replicated DNA. Thus, at the origin of DNA replication, SeqA binding blocks premature reinitiation of replication rounds. Although most investigators have focused on the role of SeqA at replication origins, it has long been suspected that SeqA has a more pervasive role. In this study, we describe how we have been able to identify scores of targets, across the entire Escherichia coli chromosome, to which SeqA binds. Using synchronously growing cells, we show that the distribution of SeqA between these targets alters as replication of the chromosome progresses. This suggests that sequential changes in SeqA distribution orchestrate a program of gene expression that ensures coordinated DNA replication and cell division.


Frontiers in Microbiology | 2012

Mining Genomes of Marine Cyanobacteria for Elements of Zinc Homeostasis

James P. Barnett; Andrew D. Millard; Amira Z. Ksibe; David J. Scanlan; Ralf Schmid; Claudia A. Blindauer

Zinc is a recognized essential element for the majority of organisms, and is indispensable for the correct function of hundreds of enzymes and thousands of regulatory proteins. In aquatic photoautotrophs including cyanobacteria, zinc is thought to be required for carbonic anhydrase and alkaline phosphatase, although there is evidence that at least some carbonic anhydrases can be cambialistic, i.e., are able to acquire in vivo and function with different metal cofactors such as Co2+ and Cd2+. Given the global importance of marine phytoplankton, zinc availability in the oceans is likely to have an impact on both carbon and phosphorus cycles. Zinc concentrations in seawater vary over several orders of magnitude, and in the open oceans adopt a nutrient-like profile. Most studies on zinc handling by cyanobacteria have focused on freshwater strains and zinc toxicity; much less information is available on marine strains and zinc limitation. Several systems for zinc homeostasis have been characterized in the freshwater species Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803, but little is known about zinc requirements or zinc handling by marine species. Comparative metallo-genomics has begun to explore not only the putative zinc proteome, but also specific protein families predicted to have an involvement in zinc homeostasis, including sensors for excess and limitation (SmtB and its homologs as well as Zur), uptake systems (ZnuABC), putative intracellular zinc chaperones (COG0523) and metallothioneins (BmtA), and efflux pumps (ZiaA and its homologs).


Journal of the Marine Biological Association of the United Kingdom | 2006

Virus isolation studies suggest short-term variations in abundance in natural cyanophage populations of the Indian Ocean

Martha R. J. Clokie; Andrew D. Millard; Jaytry Y. Mehta; Nicholas H. Mann

Cyanophage abundance has been shown to fluctuate over long timescales and with depth, but little is known about how it varies over short timescales. Previous short-term studies have relied on counting total virus numbers and therefore the phages which infect cyanobacteria cannot be distinguished from the total count. In this study, an isolation-based approach was used to determine cyanophage abundance from water samples collected over a depth profile for a 24 h period from the Indian Ocean. Samples were used to infect Synechococcus sp. WH7803 and the number of plaque forming units (pfu) at each time point and depth were counted. At 10 m phage numbers were similar for most time-points, but there was a distinct peak in abundance at 0100 hours. Phage numbers were lower at 25 m and 50 m and did not show such strong temporal variation. No phages were found below this depth. Therefore, we conclude that only the abundance of phages in surface waters showed a clear temporal pattern over a short timescale. Fifty phages from a range of depths and time points were isolated and purified. The molecular diversity of these phages was estimated using a section of the phage-encoded psbD gene and the results from a phylogenetic analysis do not suggest that phages from the deeper waters form a distinct subgroup.


Virology Journal | 2010

T4 genes in the marine ecosystem: studies of the T4-like cyanophages and their role in marine ecology.

Martha R. J. Clokie; Andrew D. Millard; Nicholas H. Mann

From genomic sequencing it has become apparent that the marine cyanomyoviruses capable of infecting strains of unicellular cyanobacteria assigned to the genera Synechococcus and Prochlorococcus are not only morphologically similar to T4, but are also genetically related, typically sharing some 40-48 genes. The large majority of these common genes are the same in all marine cyanomyoviruses so far characterized. Given the fundamental physiological differences between marine unicellular cyanobacteria and heterotrophic hosts of T4-like phages it is not surprising that the study of cyanomyoviruses has revealed novel and fascinating facets of the phage-host relationship. One of the most interesting features of the marine cyanomyoviruses is their possession of a number of genes that are clearly of host origin such as those involved in photosynthesis, like the psbA gene that encodes a core component of the photosystem II reaction centre. Other host-derived genes encode enzymes involved in carbon metabolism, phosphate acquisition and ppGpp metabolism. The impact of these host-derived genes on phage fitness has still largely to be assessed and represents one of the most important topics in the study of this group of T4-like phages in the laboratory. However, these phages are also of considerable environmental significance by virtue of their impact on key contributors to oceanic primary production and the true extent and nature of this impact has still to be accurately assessed.


Journal of the Marine Biological Association of the United Kingdom | 2006

A temporal and spatial investigation of cyanophage abundance in the Gulf of Aqaba Red Sea

Andrew D. Millard; Nicholas H. Mann

The aim of this study was to determine the abundance of cyanophages over an annual cycle in the Red Sea from the period April 1999 to December 1999 at a range of depths. Cyanophage numbers from 71 water samples were determined by the use of plaque assays using four different Synechococcus strains. The results indicate that cyanophage are found throughout the water column from surface waters to depths of 150 m, with a discrete maximum in the number of cyanophages in the summer months of July, August and September at a depth of 30 m. Eighty-seven cyanophages were isolated and characterized in terms of host range, genome size and possession of a myoviral portal vertex gene. Cyanophages were found to infect multiple strains of Synechococcus from different phylogenetic clades. The genome sizes of cyanophages were also found to be bigger than previously estimated.


Photosynthesis Research | 2015

Shedding new light on viral photosynthesis

Richard J. Puxty; Andrew D. Millard; David J. Evans; David J. Scanlan

Viruses infecting the environmentally important marine cyanobacteria Prochlorococcus and Synechococcus encode ‘auxiliary metabolic genes’ (AMGs) involved in the light and dark reactions of photosynthesis. Here, we discuss progress on the inventory of such AMGs in the ever-increasing number of viral genome sequences as well as in metagenomic datasets. We contextualise these gene acquisitions with reference to a hypothesised fitness gain to the phage. We also report new evidence with regard to the sequence and predicted structural properties of viral petE genes encoding the soluble electron carrier plastocyanin. Viral copies of PetE exhibit extensive modifications to the N-terminal signal peptide and possess several novel residues in a region responsible for interaction with redox partners. We also highlight potential knowledge gaps in this field and discuss future opportunities to discover novel phage–host interactions involved in the photosynthetic process.


PLOS Neglected Tropical Diseases | 2015

Differences in the Faecal Microbiome in Schistosoma haematobium Infected Children vs. Uninfected Children

Gemma L. Kay; Andrew D. Millard; Martin J. Sergeant; Nicholas Midzi; Reggis Gwisai; Takafira Mduluza; Alasdair Ivens; Norman Nausch; Francisca Mutapi; Mark J. Pallen

Background Several infectious diseases and therapeutic interventions cause gut microbe dysbiosis and associated pathology. We characterised the gut microbiome of children exposed to the helminth Schistosoma haematobium pre- and post-treatment with the drug praziquantel (PZQ), with the aim to compare the gut microbiome structure (abundance and diversity) in schistosome infected vs. uninfected children. Methods Stool DNA from 139 children aged six months to 13 years old; with S. haematobium infection prevalence of 27.34% was extracted at baseline. 12 weeks following antihelminthic treatment with praziqunatel, stool DNA was collected from 62 of the 139 children. The 16S rRNA genes were sequenced from the baseline and post-treatment samples and the sequence data, clustered into operational taxonomic units (OTUs). The OTU data were analysed using multivariate analyses and paired T- test. Results Pre-treatment, the most abundant phyla were Bacteroidetes, followed by Firmicutes and Proteobacteria respectively. The relative abundance of taxa among bacterial classes showed limited variation by age group or sex and the bacterial communities had similar overall compositions. Although there were no overall differences in the microbiome structure across the whole age range, the abundance of 21 OTUs varied significantly with age (FDR<0.05). Some OTUs including Veillonella, Streptococcus, Bacteroides and Helicobacter were more abundant in children ≤ 1 year old compared to older children. Furthermore, the gut microbiome differed in schistosome infected vs. uninfected children with 27 OTU occurring in infected but not uninfected children, for 5 of these all Prevotella, the difference was statistically significant (p <0.05) with FDR <0.05. PZQ treatment did not alter the microbiome structure in infected or uninfected children from that observed at baseline. Conclusions There are significant differences in the gut microbiome structure of infected vs. uninfected children and the differences were refractory to PZQ treatment.


The ISME Journal | 2010

An antisense RNA in a lytic cyanophage links psbA to a gene encoding a homing endonuclease

Andrew D. Millard; Gregor Gierga; Martha R. J. Clokie; David J. Evans; Wolfgang R. Hess; David J. Scanlan

Cyanophage genomes frequently possess the psbA gene, encoding the D1 polypeptide of photosystem II. This protein is believed to maintain host photosynthetic capacity during infection and enhance phage fitness under high-light conditions. Although the first documented cyanophage-encoded psbA gene contained a group I intron, this feature has not been widely reported since, despite a plethora of new sequences becoming available. In this study, we show that in cyanophage S-PM2, this intron is spliced during the entire infection cycle. Furthermore, we report the widespread occurrence of psbA introns in marine metagenomic libraries, and with psbA often adjacent to a homing endonuclease (HE). Bioinformatic analysis of the intergenic region between psbA and the adjacent HE gene F-CphI in S-PM2 showed the presence of an antisense RNA (asRNA) connecting these two separate genetic elements. The asRNA is co-regulated with psbA and F-CphI, suggesting its involvement with their expression. Analysis of scaffolds from global ocean survey datasets shows this asRNA to be commonly associated with the 3′ end of cyanophage psbA genes, implying that this potential mechanism of regulating marine ‘viral’ photosynthesis is evolutionarily conserved. Although antisense transcription is commonly found in eukaryotic and increasingly also in prokaryotic organisms, there has been no indication for asRNAs in lytic phages so far. We propose that this asRNA also provides a means of preventing the formation of mobile group I introns within cyanophage psbA genes.

Collaboration


Dive into the Andrew D. Millard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinyu Shan

University of Leicester

View shared research outputs
Researchain Logo
Decentralizing Knowledge