Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew D. Sharrocks is active.

Publication


Featured researches published by Andrew D. Sharrocks.


Nature | 2001

Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence.

Naoko Ohtani; Zoe Zebedee; Thomas J. G. Huot; Julie Stinson; Masataka Sugimoto; Yasuhiro Ohashi; Andrew D. Sharrocks; Gordon Peters; Eiji Hara

The p16INK4a cyclin-dependent kinase inhibitor is implicated in replicative senescence, the state of permanent growth arrest provoked by cumulative cell divisions or as a response to constitutive Ras–Raf–MEK signalling in somatic cells. Some contribution to senescence presumably underlies the importance of p16INK4a as a tumour suppressor but the mechanisms regulating its expression in these different contexts remain unknown. Here we demonstrate a role for the Ets1 and Ets2 transcription factors based on their ability to activate the p16INK4a promoter through an ETS-binding site and their patterns of expression during the lifespan of human diploid fibroblasts. The induction of p16INK4a by Ets2, which is abundant in young human diploid fibroblasts, is potentiated by signalling through the Ras–Raf–MEK kinase cascade and inhibited by a direct interaction with the helix–loop–helix protein Id1 (ref. 11). In senescent cells, where the Ets2 levels and MEK signalling decline, the marked increase in p16INK4a expression is consistent with the reciprocal reduction of Id1 and accumulation of Ets1.


Molecular and Cellular Biology | 1997

Role of p38 and JNK mitogen-activated protein kinases in the activation of ternary complex factors.

Alan J. Whitmarsh; Shen Hsi Yang; Michael S S Su; Andrew D. Sharrocks; Roger J. Davis

The transcription factors Elk-1 and SAP-1 bind together with serum response factor to the serum response element present in the c-fos promoter and mediate increased gene expression. The ERK, JNK, and p38 groups of mitogen-activated protein (MAP) kinases phosphorylate and activate Elk-1 in response to a variety of extracellular stimuli. In contrast, SAP-1 is activated by ERK and p38 MAP kinases but not by JNK. The proinflammatory cytokine interleukin-1 (IL-1) activates JNK and p38 MAP kinases and induces the transcriptional activity of Elk-1 and SAP-1. These effects of IL-1 appear to be mediated by Rho family GTPases. To examine the relative roles of the JNK and p38 MAP kinase pathways, we examined the effects of IL-1 on CHO and NIH 3T3 cells. Studies of NIH 3T3 cells demonstrated that both the JNK and p38 MAP kinases are required for IL-1-stimulated Elk-1 transcriptional activity, while only p38 MAP kinase contributes to IL-1-induced activation of SAP-1. In contrast, studies of CHO cells demonstrated that JNK (but not the p38 MAP kinase) is required for IL-1-stimulated Elk-1-dependent gene expression and that neither JNK nor p38 MAP kinase is required for IL-1 signaling to SAP-1. We conclude that (i) distinct MAP kinase signal transduction pathways mediate IL-1 signaling to ternary complex transcription factors (TCFs) in different cell types and (ii) individual TCFs show different responses to the JNK and p38 signaling pathways. The differential utilization of TCF proteins and MAP kinase signaling pathways represents a potential mechanism for the determination of cell-type-specific responses to extracellular stimuli.


Trends in Biochemical Sciences | 2000

Docking domains and substrate-specificity determination for MAP kinases.

Andrew D. Sharrocks; Shen His Yang; Alex Galanis

Signalling specificity in eukaryotic cells is maintained by several mechanisms. One mechanism by which mitogen-activated protein (MAP) kinases ensure their specificity of action is by interacting with their substrates through docking domains. These docking domains recruit the kinases to the correct substrates and enhance their fidelity and efficiency of action. Additional specificity determinants in the substrates serve to enhance the specificity of substrate phosphorylation by MAP kinases further.


The International Journal of Biochemistry & Cell Biology | 1997

The ETS-domain transcription factor family

Andrew D. Sharrocks; A.Louise Brown; Yan Ling; Paula R. Yates

ETS-domain transcription-factor networks represent a model for how combinatorial gene expression is achieved. These transcription factors interact with a multitude of co-regulatory partners to elicit gene-specific responses and drive distinct biological processes. These proteins are controlled by a complex series of inter and intramolecular interactions, and signalling pathways impinge on these proteins to further regulate their action.


Molecular Cell | 2004

SUMO promotes HDAC-mediated transcriptional repression.

Shen Hsi Yang; Andrew D. Sharrocks

Recently, SUMO modification has been shown to impart repressive properties on several transcriptional regulatory proteins. Indeed, the ETS domain transcription factor Elk-1 is modified by SUMO, and this modification is reversed by ERK MAP kinase pathway activation. This causes a switch from a repressive to activated state. However, the mechanism(s) of SUMO-mediated transcriptional repression is unclear. Here, we have investigated how sumoylation of Elk-1 leads to transcriptional repression. We demonstrate that sumoylation of Elk-1 results in the recruitment of histone deacetylase activity to promoters. In particular, our data point to a key role for HDAC-2. This recruitment leads to decreased histone acetylation and hence transcriptional repression at Elk-1 target genes. Thus, our data demonstrate an important integration point for two protein-modifying pathways in the cell, the SUMO and deacetylation pathways, that combine to promote transcriptional repression.


The EMBO Journal | 1998

Differential targeting of MAP kinases to the ETS-domain transcription factor Elk-1

Shen Hsi Yang; Alan J. Whitmarsh; Roger J. Davis; Andrew D. Sharrocks

The activation of MAP kinase (MAPK) signal transduction pathways results in the phosphorylation of transcription factors by the terminal kinases in these cascades. Different pathways are activated by mitogenic and stress stimuli, which lead to the activation of distinct groups of target proteins. The ETS‐domain transcription factor Elk‐1 is a substrate for three distinct classes of MAPKs. Elk‐1 contains a targeting domain, the D‐domain, which is distinct from the phosphoacceptor motifs and is required for efficient phosphorylation and activation by the ERK MAPKs. In this study, we demonstrate that members of the JNK subfamily of MAPKs are also targeted to Elk‐1 by this domain. Targeting via this domain is essential for the efficient and rapid phosphorylation and activation of Elk‐1 both in vitro and in vivo. The ERK and JNK MAPKs use overlapping yet distinct determinants in the D‐domain for targeting to Elk‐1. In contrast, members of the p38 subfamily of MAPKs are not targeted to Elk‐1 via this domain. Our data therefore demonstrate that different classes of MAPKs exhibit differential requirements for targeting to Elk‐1.


Mechanisms of Development | 2000

Insights into early vasculogenesis revealed by expression of the ETS-domain transcription factor Fli-1 in wild-type and mutant zebrafish embryos

Louise A Brown; Adam Rodaway; Thomas F. Schilling; Trevor Jowett; Philip W. Ingham; Roger K. Patient; Andrew D. Sharrocks

Fli-1 is an ETS-domain transcription factor whose locus is disrupted in Ewings Sarcoma and F-MuLV induced erythroleukaemia. To gain a better understanding of its normal function, we have isolated the zebrafish homologue. Similarities with other vertebrates, in the amino acid sequence and DNA binding properties of Fli-1 from zebrafish, suggest that its function has been conserved during vertebrate evolution. The initial expression of zebrafish fli-1 in the posterior lateral mesoderm overlaps with that of gata2 in a potential haemangioblast population which likely contains precursors of blood and endothelium. Subsequently, fli-1 and gata2 expression patterns diverge, with separate fli-1 and gata2 expression domains arising in the developing vasculature and in sites of blood formation respectively. Elsewhere in the embryo, fli-1 is expressed in sites of vasculogenesis. The expression of fli-1 was investigated in a number of zebrafish mutants, which affect the circulatory system. In cloche, endothelium is absent and blood is drastically reduced. In contrast to the blood and endothelial markers that have been studied previously, fli-1 expression was initiated normally in cloche embryos, indicating that induction of fli-1 is one of the earliest indicators of haemangioblast formation. Furthermore, although fli-1 expression in the trunk was not maintained, the normal expression pattern in the anterior half of the embryo was retained. These anterior cells did not, however, condense to form blood vessels. These data indicate that cloche has previously unsuspected roles at multiple stages in the formation of the vasculature. Analysis of fli-1 expression in midline patterning mutants floating head and squint, confirms a requirement for the notochord in the formation of the dorsal-aorta. The formation of endothelium in one-eyed pinhead, cyclops and squint embryos indicates a novel role for the endoderm in the formation of the axial vein. The phenotype of sonic-you mutants implies a likely role for Sonic Hedgehog in mediating these processes.


Molecular and Cellular Biology | 1998

The Elk-1 ETS-Domain Transcription Factor Contains a Mitogen-Activated Protein Kinase Targeting Motif

Shen Hsi Yang; Paula R. Yates; Alan J. Whitmarsh; Roger J. Davis; Andrew D. Sharrocks

ABSTRACT The phosphorylation of transcription factors by mitogen-activated protein kinases (MAP) is a pivotal event in the cellular response to the activation of MAP kinase signal transduction pathways. Mitogenic and stress stimuli activate different pathways and lead to the activation of distinct groups of target proteins. Elk-1 is targeted by three distinct MAP kinase pathways. In this study, we demonstrate that the MAP kinase ERK2 is targeted to Elk-1 by a domain which is distinct from, and located N-terminally to, its phosphoacceptor motifs. Targeting via this domain is essential for the efficient and rapid phosphorylation of Elk-1 in vitro and full and rapid activation in vivo. Specific residues involved in ERK targeting have been identified. Our data indicate that the targeting of different classes of MAP kinases to their nuclear substrates may be a common mechanism to increase the specificity and efficiency of this signal transduction pathway.


Molecular Cell | 2003

Dynamic Interplay of the SUMO and ERK Pathways in Regulating Elk-1 Transcriptional Activity

Shen Hsi Yang; Ellis Jaffray; Ronald T. Hay; Andrew D. Sharrocks

The ETS domain transcription factor Elk-1 is a direct target of the MAP kinase pathways. Phosphorylation of the Elk-1 transcriptional activation domain by MAP kinases triggers its activation. However, Elk-1 also contains two domains with repressive activities. One of these, the R motif, appears to function by suppressing the activity of the activation domain. Here, we demonstrate that SUMO modification of the R motif is required for this repressive activity. A dynamic interplay exists between the activating ERK MAP kinase pathway and the repressive SUMO pathway. ERK pathway activation leads to both phosphorylation of Elk-1 and loss of SUMO conjugation and, hence, to the loss of the repressive activity of the R motif. Thus, the reciprocal regulation of the activation and repressive activities are coupled by MAP kinase modification of Elk-1.


Molecular and Cellular Biology | 1999

Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors

Shen Hsi Yang; Alex Galanis; Andrew D. Sharrocks

ABSTRACT Mitogen-activated protein (MAP) kinase-mediated signalling to the nucleus is an important event in the conversion of extracellular signals into a cellular response. However, the existence of multiple MAP kinases which phosphorylate similar phosphoacceptor motifs poses a problem in maintaining substrate specificity and hence the correct biological response. Both the extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) subfamilies of MAP kinases use a second specificity determinant and require docking to their transcription factor substrates to achieve maximal substrate activation. In this study, we demonstrate that among the different MAP kinases, the MADS-box transcription factors MEF2A and MEF2C are preferentially phosphorylated and activated by the p38 subfamily members p38α and p38β2. The efficiency of phosphorylation in vitro and transcriptional activation in vivo of MEF2A and MEF2C by these p38 subtypes requires the presence of a kinase docking domain (D-domain). Furthermore, the D-domain from MEF2A is sufficient to confer p38 responsiveness on different transcription factors, and reciprocal effects are observed upon the introduction of alternative D-domains into MEF2A. These results therefore contribute to our understanding of signalling to MEF2 transcription factors and demonstrate that the requirement for substrate binding by MAP kinases is an important facet of three different subclasses of MAP kinases (ERK, JNK, and p38).

Collaboration


Dive into the Andrew D. Sharrocks's collaboration.

Top Co-Authors

Avatar

Shen Hsi Yang

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Paul Shore

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Zongling Ji

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yeng Ang

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Baoqiang Guo

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Aaron Webber

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Andrew Hayes

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge