Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew D. Southam is active.

Publication


Featured researches published by Andrew D. Southam.


Analytical Chemistry | 2011

Characterization of Isotopic Abundance Measurements in High Resolution FT-ICR and Orbitrap Mass Spectra for Improved Confidence of Metabolite Identification

Ralf J. M. Weber; Andrew D. Southam; Ulf Sommer; Mark R. Viant

Currently there is limited information available on the accuracy and precision of relative isotopic abundance (RIA) measurements using high-resolution direct-infusion mass spectrometry (HR DIMS), and it is unclear if this information can benefit automated peak annotation in metabolomics. Here we characterize the accuracy of RIA measurements on the Thermo LTQ FT Ultra (resolution of 100,000-750,000) and LTQ Orbitrap (R = 100,000) mass spectrometers. This first involved reoptimizing the SIM-stitching method (Southam, A. D. Anal. Chem. 2007, 79, 4595-4602) for the LTQ FT Ultra, which achieved a ca. 3-fold sensitivity increase compared to the original method while maintaining a root-mean-squared mass error of 0.16 ppm. Using this method, we show the quality of RIA measurements is highly dependent on signal-to-noise ratio (SNR), with RIA accuracy increasing with higher SNR. Furthermore, a negative offset between the theoretical and empirically calculated numbers of carbon atoms was observed for both mass spectrometers. Increasing the resolution of the LTQ FT Ultra lowered both the sensitivity and the quality of RIA measurements. Overall, although the errors in the empirically calculated number of carbons can be large (e.g., 10 carbons), we demonstrate that RIA measurements do improve automated peak annotation, increasing the number of single empirical formula assignments by >3-fold compared to using accurate mass alone.


Journal of the American Society for Mass Spectrometry | 2009

A signal filtering method for improved quantification and noise discrimination in fourier transform ion cyclotron resonance mass spectrometry-based metabolomics data

Tristan G. Payne; Andrew D. Southam; Theodoros N. Arvanitis; Mark R. Viant

Direct-infusion electrospray-ionization Fourier transform ion cyclotron resonance mass spectrometry (DI ESI FT-ICR MS) is increasingly being utilized in metabolomics, including the high sensitivity selected ion monitoring (SIM)-stitching approach. Accurate signal quantification and the discrimination of real signals from noise remain major challenges for this approach, with both adversely affected by factors including ion suppression during electrospray, ion—ion interactions in the detector cell, and thermally-induced white noise. This is particularly problematic for complex mixture analysis where hundreds of metabolites are present near the noise level. Here we address relative signal quantification and noise discrimination issues in SIM-stitched DI ESI FT-ICR MS-based metabolomics. Using liver tissue, we first optimized the number of scans (n) acquired per SIM window to address the balance between quantification accuracy versus acquisition time (and thus sample throughput); a minimum of n = 5 is recommended. Secondly, we characterized and computationally-corrected an effect whereby an ion’s intensity is dependent upon its location within a SIM window, exhibiting a 3-fold higher intensity at the high m/z end. This resulted in significantly improved quantification accuracy. Finally, we thoroughly characterized a three-stage filter to discriminate noise from real signals, which comprised a signal-to-noise-ratio (SNR) hard threshold, then a “replicate” filter (retaining only peaks in r-out-of-3 replicate analyses), and then a “sample” filter (retaining only peaks in >s% of biological samples). We document the benefits of three-stage filtering versus one- and two-stage filters, and show the importance of selecting filter parameters that balance the confidence that a signal is real versus the total number of peaks detected.


Journal of Proteome Research | 2008

Metabolic changes in flatfish hepatic tumours revealed by NMR-based metabolomics and metabolic correlation networks

Andrew D. Southam; John M. Easton; Grant D. Stentiford; Christian Ludwig; Theodoros N. Arvanitis; Mark R. Viant

Histopathologically well-characterized fish liver was analyzed by 800 MHz 1H NMR metabolomics to identify metabolic changes between healthy and tumor tissue. Data were analyzed by multivariate statistics and metabolic correlation networks, and results revealed elevated anaerobic metabolism and reduced choline metabolism in tumor tissue. Significant negative correlations were observed between alanine-acetate (p = 3.0 x 10(-5)) and between proline-acetate (p = 0.003) in tumors only, suggesting alanine and proline are utilized as alternative energy sources in flatfish liver tumors.


Environmental Science & Technology | 2011

Metabolomics reveals target and off-target toxicities of a model organophosphate pesticide to roach (Rutilus rutilus): implications for biomonitoring.

Andrew D. Southam; Anke Lange; Adam Hines; Elizabeth M. Hill; Yoshinao Katsu; Taisen Iguchi; Charles R. Tyler; Mark R. Viant

The ability of targeted and nontargeted metabolomics to discover chronic ecotoxicological effects is largely unexplored. Fenitrothion, an organophosphate pesticide, is categorized as a “red list” pollutant, being particularly hazardous to aquatic life. It acts primarily as a cholinesterase inhibitor, but evidence suggests it can also act as an androgen receptor antagonist. Whole-organism fenitrothion-induced toxicity is well-established, but information regarding target and off-target molecular toxicities is limited. Here we study the molecular responses of male roach (Rutilus rutilus) exposed to fenitrothion, including environmentally realistic concentrations, for 28 days. Acetylcholine was assessed in brain; steroid metabolism was measured in testes and plasma; and NMR and mass spectrometry-based metabolomics were conducted on testes and liver to discover off-target toxicity. O-demethylation was confirmed as a major route of pesticide degradation. Fenitrothion significantly depleted acetylcholine, confirming its primary mode of action, and 11-ketotestosterone in plasma and cortisone in testes, showing disruption of steroid metabolism. Metabolomics revealed significant perturbations to the hepatic phosphagen system and previously undocumented effects on phenylalanine metabolism in liver and testes. On the basis of several unexpected molecular responses that were opposite to the anticipated acute toxicity, we propose that chronic pesticide exposure induces an adapting phenotype in roach, which may have considerable implications for interpreting molecular biomarker responses in field-sampled fish.


Cancer Research | 2015

Drug Redeployment to Kill Leukemia and Lymphoma Cells by Disrupting SCD1-Mediated Synthesis of Monounsaturated Fatty Acids

Andrew D. Southam; Farhat L. Khanim; Rachel E. Hayden; Julia K. Constantinou; Katarzyna M. Koczula; Robert H. Michell; Mark R. Viant; Mark T. Drayson; Christopher M. Bunce

The redeployed drug combination of bezafibrate and medroxyprogesterone acetate (designated BaP) has potent in vivo anticancer activity in acute myelogenous leukemia (AML) and endemic Burkitt lymphoma (eBL) patients; however, its mechanism-of-action is unclear. Given that elevated fatty acid biosynthesis is a hallmark of many cancers and that these drugs can affect lipid metabolism, we hypothesized that BaP exerts anticancer effects by disrupting lipogenesis. We applied mass spectrometry-based lipidomics and gene and protein expression measurements of key lipogenic enzymes [acetyl CoA carboxylase 1 (ACC1), fatty acid synthase (FASN), and stearoyl CoA desaturase 1 (SCD1)] to AML and eBL cell lines treated with BaP. BaP treatment decreased fatty acid and phospholipid biosynthesis from (13)C D-glucose. The proportion of phospholipid species with saturated and monounsaturated acyl chains was also decreased after treatment, whereas those with polyunsaturated chains increased. BaP decreased SCD1 protein levels in each cell line (0.46- to 0.62-fold; P < 0.023) and decreased FASN protein levels across all cell lines (0.87-fold decrease; P = 1.7 × 10(-4)). Changes to ACC1 protein levels were mostly insignificant. Supplementation with the SCD1 enzymatic product, oleate, rescued AML and e-BL cells from BaP cell killing and decreased levels of BaP-induced reactive oxygen species, whereas supplementation with the SCD1 substrate (and FASN product), palmitate, did not rescue cells. In conclusion, these data suggest that the critical anticancer actions of BaP are decreases in SCD1 levels and monounsaturated fatty acid synthesis. To our knowledge, this is the first time that clinically available antileukemic and antilymphoma drugs targeting SCD1 have been reported.


Diseases of Aquatic Organisms | 2010

Gene expression analyses of hepatocellular adenoma and hepatocellular carcinoma from the marine flatfish Limanda limanda.

Hamish J. Small; Timothy Williams; Joachim Sturve; James K. Chipman; Andrew D. Southam; Tim P. Bean; Brett P. Lyons; Grant D. Stentiford

At selected sites around the UK, the offshore sentinel flatfish species dab Limanda limanda are found to contain elevated levels of macroscopic liver tumors. Previous proteomic and metabolomic studies have demonstrated that differences exist between tumor and non-tumor tissues; however, these differing features were not identified, and little is known about the changes at the gene expression level, or whether prognostic markers are present and can be identified. A flounder Platichthys flesus custom cDNA microarray and RT-PCR were used to investigate hepatic mRNA expression in the histologically confirmed tumors, hepatocellular adenoma (HA) and hepatocellular carcinoma (HC) from dab, and in adjacent normal tissue from the same fish. Differences in gene expression were observed between tumor and normal tissues, and between tumor types. A class-prediction approach using 50 transcripts revealed sufficient group-specific expression profiles to allow segregation of samples dependent on their tumor type or the sex of the host. Vitellogenins were found to display the greatest induction (up to 500-fold induction) in some HC tumors from female fish and in both HA and HC tumors from males. To the best of our knowledge, this is the first report of the association of vitellogenin expression with tumors of wild fish.


Metabolomics | 2014

Distinguishing between the metabolome and xenobiotic exposome in environmental field samples analysed by direct-infusion mass spectrometry based metabolomics and lipidomics

Andrew D. Southam; Anke Lange; Raghad Al-Salhi; Elizabeth M. Hill; Charles R. Tyler; Mark R. Viant

Abstract Environmental metabolomics is increasingly used to investigate organismal responses to complex chemical mixtures, including waste water effluent (WWE). In parallel, increasingly sensitive analytical methods are being used in metabolomics studies, particularly mass spectrometry. This introduces a considerable, yet overlooked, challenge that high analytical sensitivity will not only improve the detection of endogenous metabolites in biological specimens but also exogenous chemicals. If these often unknown xenobiotic features are not removed from the “biological” dataset, they will bias the interpretation and could lead to incorrect conclusions about the biotic response. Here we illustrate and validate a novel workflow classifying the origin of peaks detected in biological samples as: endogenous, xenobiotics, or metabolised xenobiotics. The workflow is demonstrated using direct infusion mass spectrometry-based metabolomic analysis of testes from roach exposed to different concentrations of a complex WWE. We show that xenobiotics and their metabolic products can be detected in roach testes (including triclosan, chloroxylenol and chlorophene), and that these compounds have a disproportionately high level of statistical significance within the total (bio)chemical changes induced by the WWE. Overall we have demonstrated that this workflow extracts more information from an environmental metabolomics study of complex mixture exposures than was possible previously.


Frontiers in Microbiology | 2015

Cryptococcal 3-Hydroxy Fatty Acids Protect Cells Against Amoebal Phagocytosis

Uju L. Madu; Adepemi O. Ogundeji; Bonang Mochochoko; Carolina H. Pohl; Jacobus Albertyn; Chantel W. Swart; J. William Allwood; Andrew D. Southam; Warwick B. Dunn; Robin C. May; Olihile M. Sebolai

We previously reported on a 3-hydroxy fatty acid that is secreted via cryptococcal capsular protuberances - possibly to promote pathogenesis and survival. Thus, we investigated the role of this molecule in mediating the fate of Cryptococcus (C.) neoformans and the related species C. gattii when predated upon by amoebae. We show that this molecule protects cells against the phagocytic effects of amoebae. C. neoformans UOFS Y-1378 (which produces 3-hydroxy fatty acids) was less sensitive toward amoebae compared to C. neoformans LMPE 046 and C. gattii R265 (both do not produce 3-hydroxy fatty acids) and addition of 3-hydroxy fatty acids to C. neoformans LMPE 046 and C. gattii R265 culture media, causes these strains to become more resistant to amoebal predation. Conversely, addition of aspirin (a 3-hydroxy fatty acid inhibitor) to C. neoformans UOFS Y-1378 culture media made cells more susceptible to amoebae. Our data suggest that this molecule is secreted at a high enough concentration to effect intracellular signaling within amoeba, which in turn, promotes fungal survival.


Scientific Reports | 2017

Probing the action of a novel anti-leukaemic drug therapy at the single cell level using modern vibrational spectroscopy techniques

Joanna L. Denbigh; David Perez-Guaita; Robbin Vernooij; Mark J. Tobin; Keith R. Bambery; Yun Xu; Andrew D. Southam; Farhat L. Khanim; Mark T. Drayson; Nicholas P. Lockyer; Royston Goodacre; Bayden R. Wood

Acute myeloid leukaemia (AML) is a life threatening cancer for which there is an urgent clinical need for novel therapeutic approaches. A redeployed drug combination of bezafibrate and medroxyprogesterone acetate (BaP) has shown anti-leukaemic activity in vitro and in vivo. Elucidation of the BaP mechanism of action is required in order to understand how to maximise the clinical benefit. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Synchrotron radiation FTIR (S-FTIR) and Raman microspectroscopy are powerful complementary techniques which were employed to probe the biochemical composition of two AML cell lines in the presence and absence of BaP. Analysis was performed on single living cells along with dehydrated and fixed cells to provide a large and detailed data set. A consideration of the main spectral differences in conjunction with multivariate statistical analysis reveals a significant change to the cellular lipid composition with drug treatment; furthermore, this response is not caused by cell apoptosis. No change to the DNA of either cell line was observed suggesting this combination therapy primarily targets lipid biosynthesis or effects bioactive lipids that activate specific signalling pathways.


Clinical Epigenetics | 2013

Disruption of DNA methylation via S-adenosylhomocysteine is a key process in high incidence liver carcinogenesis

Leda Mirbahai; Timothy Williams; Guangliang Yin; Andrew D. Southam; Ulf Sommer; Ning Li; John P. Bignell; Brett P. Lyons; Mark R. Viant; James K. Chipman

Modifications in histologically normal tissue distal to tumours are increasingly evident and the role of such molecular events in tumour susceptibility or in response to presence of a tumour is unclear. We have exploited the ability to explain distal tissue modifications in the dab fish (Limanda limanda) which has an unprecedented high occurrence of hepatic adenoma (up to 20%) when analysed from the natural environment. To investigate this, three tissue categories of hepatocellular adenoma, histologically normal liver tissue distal to tumours and livers of non-tumour-bearing dab were used. A multi-“omics” approach was used to provide a comprehensive understanding of the key molecular abnormalities. A remarkable and consistent global hypomethylation, modification of CpG island methylation, gene expression and disruption of one-carbon metabolism was discovered in normal tissue distal to tumours compared to livers of non-tumour-bearing fish. The mechanism of this disruption is linked, not to depletion of S-adenosylmethionine, as is often a feature of mammalian tumours, but to a decrease in choline and elevated S-adenosylhomocysteine, a potent inhibitor of DNA methytransferase. This novel feature of normal-appearing tissue of tumour-bearing fish helps to understand the unprecedentedly high incidence of tumours in fish sampled from the field and adds weight to the controversial epigenetic progenitor model of tumourigenesis.

Collaboration


Dive into the Andrew D. Southam's collaboration.

Top Co-Authors

Avatar

Mark R. Viant

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Hines

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge