Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew D. Steen is active.

Publication


Featured researches published by Andrew D. Steen.


Nature | 2013

Predominant archaea in marine sediments degrade detrital proteins

Karen G. Lloyd; Lars Schreiber; Dorthe G. Petersen; Kasper Urup Kjeldsen; Mark A. Lever; Andrew D. Steen; Ramunas Stepanauskas; Michael Richter; Sara Kleindienst; Sabine Lenk; Andreas Schramm; Bo Barker Jørgensen

Half of the microbial cells in the Earth’s oceans are found in sediments. Many of these cells are members of the Archaea, single-celled prokaryotes in a domain of life separate from Bacteria and Eukaryota. However, most of these archaea lack cultured representatives, leaving their physiologies and placement on the tree of life uncertain. Here we show that the uncultured miscellaneous crenarchaeotal group (MCG) and marine benthic group-D (MBG-D) are among the most numerous archaea in the marine sub-sea floor. Single-cell genomic sequencing of one cell of MCG and three cells of MBG-D indicated that they form new branches basal to the archaeal phyla Thaumarchaeota and Aigarchaeota, for MCG, and the order Thermoplasmatales, for MBG-D. All four cells encoded extracellular protein-degrading enzymes such as gingipain and clostripain that are known to be effective in environments chemically similar to marine sediments. Furthermore, we found these two types of peptidase to be abundant and active in marine sediments, indicating that uncultured archaea may have a previously undiscovered role in protein remineralization in anoxic marine sediments.


Applied and Environmental Microbiology | 2013

Meta-Analysis of Quantification Methods Shows that Archaea and Bacteria Have Similar Abundances in the Subseafloor

Karen G. Lloyd; Megan K. May; Richard T. Kevorkian; Andrew D. Steen

ABSTRACT There is no universally accepted method to quantify bacteria and archaea in seawater and marine sediments, and different methods have produced conflicting results with the same samples. To identify best practices, we compiled data from 65 studies, plus our own measurements, in which bacteria and archaea were quantified with fluorescent in situ hybridization (FISH), catalyzed reporter deposition FISH (CARD-FISH), polyribonucleotide FISH, or quantitative PCR (qPCR). To estimate efficiency, we defined “yield” to be the sum of bacteria and archaea counted by these techniques divided by the total number of cells. In seawater, the yield was high (median, 71%) and was similar for FISH, CARD-FISH, and polyribonucleotide FISH. In sediments, only measurements by CARD-FISH in which archaeal cells were permeabilized with proteinase K showed high yields (median, 84%). Therefore, the majority of cells in both environments appear to be alive, since they contain intact ribosomes. In sediments, the sum of bacterial and archaeal 16S rRNA gene qPCR counts was not closely related to cell counts, even after accounting for variations in copy numbers per genome. However, qPCR measurements were precise relative to other qPCR measurements made on the same samples. qPCR is therefore a reliable relative quantification method. Inconsistent results for the relative abundance of bacteria versus archaea in deep subsurface sediments were resolved by the removal of CARD-FISH measurements in which lysozyme was used to permeabilize archaeal cells and qPCR measurements which used ARCH516 as an archaeal primer or TaqMan probe. Data from best-practice methods showed that archaea and bacteria decreased as the depth in seawater and marine sediments increased, although archaea decreased more slowly.


Applied and Environmental Microbiology | 2014

Verrucomicrobia Are Candidates for Polysaccharide-Degrading Bacterioplankton in an Arctic Fjord of Svalbard

Z. Cardman; Carol Arnosti; Alan M. Durbin; Kai Ziervogel; C. Cox; Andrew D. Steen; Andreas Teske

ABSTRACT In Arctic marine bacterial communities, members of the phylum Verrucomicrobia are consistently detected, although not typically abundant, in 16S rRNA gene clone libraries and pyrotag surveys of the marine water column and in sediments. In an Arctic fjord (Smeerenburgfjord) of Svalbard, members of the Verrucomicrobia, together with Flavobacteria and smaller proportions of Alpha- and Gammaproteobacteria, constituted the most frequently detected bacterioplankton community members in 16S rRNA gene-based clone library analyses of the water column. Parallel measurements in the water column of the activities of six endo-acting polysaccharide hydrolases showed that chondroitin sulfate, laminarin, and xylan hydrolysis accounted for most of the activity. Several Verrucomicrobia water column phylotypes were affiliated with previously sequenced, glycoside hydrolase-rich genomes of individual Verrucomicrobia cells that bound fluorescently labeled laminarin and xylan and therefore constituted candidates for laminarin and xylan hydrolysis. In sediments, the bacterial community was dominated by different lineages of Verrucomicrobia, Bacteroidetes, and Proteobacteria but also included members of multiple phylum-level lineages not observed in the water column. This community hydrolyzed laminarin, xylan, chondroitin sulfate, and three additional polysaccharide substrates at high rates. Comparisons with data from the same fjord in the previous summer showed that the bacterial community in Smeerenburgfjord changed in composition, most conspicuously in the changing detection frequency of Verrucomicrobia in the water column. Nonetheless, in both years the community hydrolyzed the same polysaccharide substrates.


PLOS ONE | 2011

Latitudinal gradients in degradation of marine dissolved organic carbon.

Carol Arnosti; Andrew D. Steen; Kai Ziervogel; Sherif Ghobrial; Wade H. Jeffrey

Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars). Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO2 reservoir, such a change could profoundly affect the global carbon cycle.


PLOS ONE | 2013

Abiotic Racemization Kinetics of Amino Acids in Marine Sediments

Andrew D. Steen; Bo Barker Jørgensen; Bente Aagaard Lomstein

The ratios of d- versus l-amino acids can be used to infer the sources and composition of sedimentary organic matter. Such inferences, however, rely on knowing the rates at which amino acids in sedimentary organic matter racemize abiotically between the d- and the l-forms. Based on a heating experiment, we report kinetic parameters for racemization of aspartic acid, glutamic acid, serine, and alanine in bulk sediment from Aarhus Bay, Denmark, taken from the surface, 30 cm, and 340 cm depth below seafloor. Extrapolation to a typical cold deep sea sediment temperature of 3°C suggests racemization rate constants of 0.50×10−5–11×10−5 yr−1. These results can be used in conjunction with measurements of sediment age to predict the ratio of d:l amino acids due solely to abiotic racemization of the source material, deviations from which can indicate the abundance and turnover of active microbial populations.


Frontiers in Microbiology | 2013

Patterns of extracellular enzyme activities and microbial metabolism in an Arctic fjord of Svalbard and in the northern Gulf of Mexico: contrasts in carbon processing by pelagic microbial communities.

Carol Arnosti; Andrew D. Steen

The microbial community composition of polar and temperate ocean waters differs substantially, but the potential functional consequences of these differences are largely unexplored. We measured bacterial production, glucose metabolism, and the abilities of microbial communities to hydrolyze a range of polysaccharides in an Arctic fjord of Svalbard (Smeerenburg Fjord), and thus to initiate remineralization of high-molecular weight organic matter. We compared these data with similar measurements previously carried out in the northern Gulf of Mexico in order to investigate whether differences in the spectrum of enzyme activities measurable in Arctic and temperate environments are reflected in “downstream” aspects of microbial metabolism (metabolism of monomers and biomass production). Only four of six polysaccharide substrates were hydrolyzed in Smeerenburg Fjord; all were hydrolyzed in the upper water column of the Gulf. These patterns are consistent on an interannual basis. Bacterial protein production was comparable at both locations, but the pathways of glucose utilization differed. Glucose incorporation rate constants were comparatively higher in Svalbard, but glucose respiration rate constants were higher in surface waters of the Gulf. As a result, at the time of sampling ca. 75% of the glucose was incorporated into biomass in Svalbard, but in the northern Gulf of Mexico most of the glucose was respired to CO2. A limited range of enzyme activities is therefore not a sign of a dormant community or one unable to further process substrates resulting from extracellular enzymatic hydrolysis. The ultimate fate of carbohydrates in marine waters, however, is strongly dependent upon the specific capabilities of heterotrophic microbial communities in these disparate environments.


The FASEB Journal | 2015

New aminopeptidase from “microbial dark matter” archaeon

Karolina Michalska; Andrew D. Steen; Gekleng Chhor; Michael Endres; Austen T. Webber; Jordan T. Bird; Karen G. Lloyd; Andrzej Joachimiak

Marine sediments host a large population of diverse, heterotrophic, uncultured microorganisms with unknown physiologies that control carbon flow through organic matter decomposition. Recently, single‐cell genomics uncovered new key players in these processes, such as the miscellaneous crenarchaeotal group. These widespread archaea encode putative intra‐ and extracellular proteases for the degradation of detrital proteins present in sediments. Here, we show that one of these enzymes is a self‐compartmentalizing tetrameric amino‐peptidase with a preference for cysteine and hydrophobic residues at the N terminus of the hydrolyzed peptide. The ability to perform detailed characterizations of enzymes from native subsurface microorganisms, without requiring that those organisms first be grown in pure culture, holds great promise for understanding key carbon transformations in the environment as well as identifying new enzymes for biomedical and biotechnological applications.—Michalska, K., Steen, A. D., Chhor, G., Endres, M., Webber, A. T., Bird, J., Lloyd, K. G., Joachimiak, A. New amino‐peptidase from “microbial dark matter” archaeon. FASEB J. 29, 4071‐4079 (2015). www.fasebj.org


Environmental Microbiology | 2017

Sequential bioavailability of sedimentary organic matter to heterotrophic bacteria

Nagissa Mahmoudi; Steven R. Beaupré; Andrew D. Steen; Ann Pearson

Aquatic sediments harbour diverse microbial communities that mediate organic matter degradation and influence biogeochemical cycles. The pool of bioavailable carbon continuously changes as a result of abiotic processes and microbial activity. It remains unclear how microbial communities respond to heterogeneous organic matrices and how this ultimately affects heterotrophic respiration. To explore the relationships between the degradation of mixed carbon substrates and microbial activity, we incubated batches of organic-rich sediments in a novel bioreactor (IsoCaRB) that permitted continuous observations of CO2 production rates, as well as sequential sampling of isotopic signatures (δ13 C, Δ14 C), microbial community structure and diversity, and extracellular enzyme activity. Our results indicated that lower molecular weight (MW), labile, phytoplankton-derived compounds were degraded first, followed by petroleum-derived exogenous pollutants, and finally by higher MW polymeric plant material. This shift in utilization coincided with a community succession and increased extracellular enzyme activities. Thus, sequential utilization of different carbon pools induced changes at both the community and cellular level, shifting community composition, enzyme activity, respiration rates, and residual organic matter reactivity. Our results provide novel insight into the accessibility of sedimentary organic matter and demonstrate how bioavailability of natural organic substrates may affect the function and composition of heterotrophic bacterial populations.


Analytical Biochemistry | 2008

Fluorescence anisotropy as a means to determine extracellular polysaccharide hydrolase activity in environmental samples

Andrew D. Steen; Pramila Gururaj; Jiahai Ma; Neil V. Blough; Carol Arnosti

Current approaches to measure the activities of microbial extracellular enzymes in aquatic environments are hampered by slow throughput or by differences between the structure of simple substrate proxies and macromolecules. Here we show that measurements of fluorescence anisotropy can be used to determine the hydrolysis rate of two fluorescently labeled polysaccharides, laminarin and xylan, in environmental samples. A simple analysis shows that the anisotropy of these fluorescently labeled polysaccharides can be approximated using a modification of the Perrin equation.


Environmental Science & Technology | 2018

Understanding Electrochemically Activated Persulfate and Its Application to Ciprofloxacin Abatement

Laura W. Matzek; Matthew J. Tipton; Abigail T. Farmer; Andrew D. Steen; Kimberly E. Carter

This study offers insight into the roles anodic and cathodic processes play in electrochemically activated persulfate (EAP) and screens EAP as a viable technique for ciprofloxacin degradation in wastewater. Sulfate radical formation at a boron-doped diamond (BDD) anode and persulfate activation at a graphite cathode were experimentally elucidated using different electrolytes and electrochemical setups. Rapid ciprofloxacin transformation occurred via pseudo-first-order mechanisms with respect to ciprofloxacin in persulfate electrolyte, reaching 84% removal in 120 min using EAP. Transformation pathways were compared to those in nitrate and sulfate electrolytes. Ciprofloxacin removal rates in the electrochemical system were 88% and 33% faster in persulfate than nitrate and sulfate electrolytes, respectively. Total organic carbon removal rates were 93% and 48% faster in persulfate than nitrate and sulfate, respectively. Use of sulfate electrolyte resulted in removal rates 6-7 times faster than those in nitrate solution. Accelerated removal in sulfate was attributed to anodic sulfate radical formation, while enhanced removal in persulfate was associated with cathodic persulfate activation and nonradical persulfate activation at the BDD anode. Quenching experiments indicated both sulfate radicals and hydroxyl radicals contributed to degradation. Comparisons between platinum and graphite cathodes showed similar cathodic persulfate activation and ciprofloxacin degradation.

Collaboration


Dive into the Andrew D. Steen's collaboration.

Top Co-Authors

Avatar

Carol Arnosti

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Ziervogel

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Austen T. Webber

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge