Andrew Delong
University of Western Ontario
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew Delong.
International Journal of Computer Vision | 2012
Andrew Delong; Anton Osokin; Hossam N. Isack; Yuri Boykov
The α-expansion algorithm has had a significant impact in computer vision due to its generality, effectiveness, and speed. It is commonly used to minimize energies that involve unary, pairwise, and specialized higher-order terms. Our main algorithmic contribution is an extension of α-expansion that also optimizes “label costs” with well-characterized optimality bounds. Label costs penalize a solution based on the set of labels that appear in it, for example by simply penalizing the number of labels in the solution.Our energy has a natural interpretation as minimizing description length (MDL) and sheds light on classical algorithms like K-means and expectation-maximization (EM). Label costs are useful for multi-model fitting and we demonstrate several such applications: homography detection, motion segmentation, image segmentation, and compression. Our C++ and MATLAB code is publicly available http://vision.csd.uwo.ca/code/.
international conference on computer vision | 2009
Andrew Delong; Yuri Boykov
Many objects contain spatially distinct regions, each with a unique colour/texture model. Mixture models ignore the spatial distribution of colours within an object, and thus cannot distinguish between coherent parts versus randomly distributed colours. We show how to encode geometric interactions between distinct region+boundary models, such as regions being interior/exterior to each other along with preferred distances between their boundaries. With a single graph cut, our method extracts only those multi-region objects that satisfy such a combined model. We show applications in medical segmentation and scene layout estimation. Unlike Li et al. [17] we do not need “domain unwrapping” nor do we have topological limits on shapes.
computer vision and pattern recognition | 2008
Andrew Delong; Yuri Boykov
Global optimisation via s-t graph cuts is widely used in computer vision and graphics. To obtain high-resolution output, graph cut methods must construct massive N-D grid-graphs containing billions of vertices. We show that when these graphs do not fit into physical memory, current max-flow/min-cut algorithms-the workhorse of graph cut methods-are totally impractical. Others have resorted to banded or hierarchical approximation methods that get trapped in local minima, which loses the main benefit of global optimisation. We enhance the push-relabel algorithm for maximum flow [14] with two practical contributions. First, true global minima can now be computed on immense grid-like graphs too large for physical memory. These graphs are ubiquitous in computer vision, medical imaging and graphics. Second, for commodity multi-core platforms our algorithm attains near-linear speedup with respect to number of processors. To achieve these goals, we generalised the standard relabeling operations associated with push-relabel.
european conference on computer vision | 2006
Yuri Boykov; Vladimir Kolmogorov; Daniel Cremers; Andrew Delong
We introduce a new approach to modelling gradient flows of contours and surfaces. While standard variational methods (e.g. level sets) compute local interface motion in a differential fashion by estimating local contour velocity via energy derivatives, we propose to solve surface evolution PDEs by explicitly estimating integral motion of the whole surface. We formulate an optimization problem directly based on an integral characterization of gradient flow as an infinitesimal move of the (whole) surface giving the largest energy decrease among all moves of equal size. We show that this problem can be efficiently solved using recent advances in algorithms for global hypersurface optimization [4,2,11]. In particular, we employ the geo-cuts method [4] that uses ideas from integral geometry to represent continuous surfaces as cuts on discrete graphs. The resulting interface evolution algorithm is validated on some 2D and 3D examples similar to typical demonstrations of level-set methods. Our method can compute gradient flows of hypersurfaces with respect to a fairly general class of continuous functionals and it is flexible with respect to distance metrics on the space of contours/surfaces. Preliminary tests for standard L2 distance metric demonstrate numerical stability, topological changes and an absence of any oscillatory motion.
Proceedings of the IEEE | 2016
Michael K. K. Leung; Andrew Delong; Babak Alipanahi; Brendan J. Frey
In this paper, we provide an introduction to machine learning tasks that address important problems in genomic medicine. One of the goals of genomic medicine is to determine how variations in the DNA of individuals can affect the risk of different diseases, and to find causal explanations so that targeted therapies can be designed. Here we focus on how machine learning can help to model the relationship between DNA and the quantities of key molecules in the cell, with the premise that these quantities, which we refer to as cell variables, may be associated with disease risks. Modern biology allows high-throughput measurement of many such cell variables, including gene expression, splicing, and proteins binding to nucleic acids, which can all be treated as training targets for predictive models. With the growing availability of large-scale data sets and advanced computational techniques such as deep learning, researchers can help to usher in a new era of effective genomic medicine.
International Journal of Computer Vision | 2012
Andrew Delong; Lena Gorelick; Olga Veksler; Yuri Boykov
Computer vision is full of problems elegantly expressed in terms of energy minimization. We characterize a class of energies with hierarchical costs and propose a novel hierarchical fusion algorithm. Hierarchical costs are natural for modeling an array of difficult problems. For example, in semantic segmentation one could rule out unlikely object combinations via hierarchical context. In geometric model estimation, one could penalize the number of unique model families in a solution, not just the number of models—a kind of hierarchical MDL criterion. Hierarchical fusion uses the well-known α-expansion algorithm as a subroutine, and offers a much better approximation bound in important cases.
computer vision and pattern recognition | 2014
Lena Gorelick; Yuri Boykov; Olga Veksler; Ismail Ben Ayed; Andrew Delong
Many computer vision problems require optimization of binary non-submodular energies. We propose a general optimization framework based on local submodular approximations (LSA). Unlike standard LP relaxation methods that linearize the whole energy globally, our approach iteratively approximates the energies locally. On the other hand, unlike standard local optimization methods (e.g. gradient descent or projection techniques) we use non-linear submodular approximations and optimize them without leaving the domain of integer solutions. We discuss two specific LSA algorithms based on trust region and auxiliary function principles, LSA-TR and LSA-AUX. These methods obtain state-of-the-art results on a wide range of applications outperforming many standard techniques such as LBP, QPBO, and TRWS. While our paper is focused on pairwise energies, our ideas extend to higher-order problems. The code is available online.
european conference on computer vision | 2012
Andrew Delong; Olga Veksler; Yuri Boykov
We develop a fast, effective algorithm for minimizing a well-known objective function for robust multi-model estimation. Our work introduces a combinatorial step belonging to a family of powerful move-making methods like α-expansion and fusion. We also show that our subproblem can be quickly transformed into a comparatively small instance of minimum-weighted vertex-cover. In practice, these vertex-cover subproblems are almost always bipartite and can be solved exactly by specialized network flow algorithms. Experiments indicate that our approach achieves the robustness of methods like affinity propagation, whilst providing the speed of fast greedy heuristics.
international conference on computer vision | 2011
Lena Gorelick; Andrew Delong; Olga Veksler; Yuri Boykov
We propose a novel patch-based image representation that is useful because it (1) inherently detects regions with repetitive structure at multiple scales and (2) yields a parameterless hierarchical segmentation. We describe an image by breaking it into coherent regions where each region is well-described (easily reconstructed) by repeatedly instantiating a patch using a set of simple transformations. In other words, a good segment is one that has sufficient repetition of some pattern, and a patch is useful if it contains a pattern that is repeated in the image.
bioRxiv | 2018
Shreshth Gandhi; Leo J. Lee; Andrew Delong; David K. Duvenaud; Brendan J. Frey
Motivation Determining RNA binding protein(RBP) binding specificity is crucial for understanding many cellular processes and genetic disorders. RBP binding is known to be affected by both the sequence and structure of RNAs. Deep learning can be used to learn generalizable representations of raw data and has improved state of the art in several fields such as image classification, speech recognition and even genomics. Previous work on RBP binding has either used shallow models that combine sequence and structure or deep models that use only the sequence. Here we combine both abilities by augmenting and refining the original Deepbind architecture to capture structural information and obtain significantly better performance. Results We propose two deep architectures, one a lightweight convolutional network for transcriptome wide inference and another a Long Short-Term Memory(LSTM) network that is suitable for small batches of data. We incorporate computationally predicted secondary structure features as input to our models and show its effectiveness in boosting prediction performance. Our models achieved significantly higher correlations on held out in-vitro test data compared to previous approaches, and generalise well to in-vivo CLIP-SEQ data achieving higher median AUCs than other approaches. We analysed the output from our model for VTS1 and CPO and provided intuition into its working. Our models confirmed known secondary structure preferences for some proteins as well as found new ones where secondary structure might play a role. We also demonstrated the strengths of our model compared to other approaches such as the ability to combine information from long distances along the input. Availability Software and models are available at https://github.com/shreshthgandhi/cDeepbind Contact [email protected], [email protected]