Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Doedens is active.

Publication


Featured researches published by Andrew Doedens.


Journal of Clinical Investigation | 2005

HIF-1α expression regulates the bactericidal capacity of phagocytes

Carole Peyssonnaux; Vivekanand Datta; Thorsten Cramer; Andrew Doedens; Emmanuel A. Theodorakis; Richard L. Gallo; Nancy Hurtado-Ziola; Victor Nizet; Randall S. Johnson

Hypoxia is a characteristic feature of the tissue microenvironment during bacterial infection. Here we report on our use of conditional gene targeting to examine the contribution of hypoxia-inducible factor 1, alpha subunit (HIF-1alpha) to myeloid cell innate immune function. HIF-1alpha was induced by bacterial infection, even under normoxia, and regulated the production of key immune effector molecules, including granule proteases, antimicrobial peptides, nitric oxide, and TNF-alpha. Mice lacking HIF-1alpha in their myeloid cell lineage showed decreased bactericidal activity and failed to restrict systemic spread of infection from an initial tissue focus. Conversely, activation of the HIF-1alpha pathway through deletion of von Hippel-Lindau tumor-suppressor protein or pharmacologic inducers supported myeloid cell production of defense factors and improved bactericidal capacity. HIF-1alpha control of myeloid cell activity in infected tissues could represent a novel therapeutic target for enhancing host defense.


Nature | 2008

Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis

Christian Stockmann; Andrew Doedens; Alexander Weidemann; Na Zhang; Norihiko Takeda; Joshua I. Greenberg; David A. Cheresh; Randall S. Johnson

Angiogenesis and the development of a vascular network are required for tumour progression, and they involve the release of angiogenic factors, including vascular endothelial growth factor (VEGF-A), from both malignant and stromal cell types. Infiltration by cells of the myeloid lineage is a hallmark of many tumours, and in many cases the macrophages in these infiltrates express VEGF-A. Here we show that the deletion of inflammatory-cell-derived VEGF-A attenuates the formation of a typical high-density vessel network, thus blocking the angiogenic switch in solid tumours in mice. Vasculature in tumours lacking myeloid-cell-derived VEGF-A was less tortuous, with increased pericyte coverage and decreased vessel length, indicating vascular normalization. In addition, loss of myeloid-derived VEGF-A decreases the phosphorylation of VEGF receptor 2 (VEGFR2) in tumours, even though overall VEGF-A levels in the tumours are unaffected. However, deletion of myeloid-cell VEGF-A resulted in an accelerated tumour progression in multiple subcutaneous isograft models and an autochthonous transgenic model of mammary tumorigenesis, with less overall tumour cell death and decreased tumour hypoxia. Furthermore, loss of myeloid-cell VEGF-A increased the susceptibility of tumours to chemotherapeutic cytotoxicity. This shows that myeloid-derived VEGF-A is essential for the tumorigenic alteration of vasculature and signalling to VEGFR2, and that these changes act to retard, not promote, tumour progression.


Genes & Development | 2010

Differential activation and antagonistic function of HIF-α isoforms in macrophages are essential for NO homeostasis

Norihiko Takeda; Ellen O'Dea; Andrew Doedens; Jung Whan Kim; Alexander Weidemann; Christian Stockmann; Masataka Asagiri; M. Celeste Simon; Alexander Hoffmann; Randall S. Johnson

Hypoxic response and inflammation both involve the action of the hypoxia-inducible transcription factors HIF-1alpha and HIF-2alpha. Previous studies have revealed that both HIF-alpha proteins are in a number of aspects similarly regulated post-translationally. However, the functional interrelationship of these two isoforms remains largely unclear. The polarization of macrophages controls functionally divergent processes; one of these is nitric oxide (NO) production, which in turn is controlled in part by HIF factors. We show here that the HIF-alpha isoforms can be differentially activated: HIF-1alpha is induced by Th1 cytokines in M1 macrophage polarization, whereas HIF-2alpha is induced by Th2 cytokines during an M2 response. This differential response was most evident in polarized macrophages through HIF-alpha isoform-specific regulation of the inducible NO synthase gene by HIF-1alpha, and the arginase1 gene by HIF-2alpha. In silico modeling predicted that regulation of overall NO availability is due to differential regulation of HIF-1alpha versus HIF-2alpha, acting to, respectively, either increase or suppress NO synthesis. An in vivo model of endotoxin challenge confirmed this; thus, these studies reveal that the two homologous transcription factors, HIF-1alpha and HIF-2alpha, can have physiologically antagonistic functions, but that their antiphase regulation allows them to coordinately regulate NO production in a cytokine-induced and transcription-dependent fashion.


Cancer Research | 2010

Macrophage Expression of Hypoxia-Inducible Factor-1α Suppresses T-Cell Function and Promotes Tumor Progression

Andrew Doedens; Christian Stockmann; Mark P. Rubinstein; Debbie Liao; Na Zhang; David G. DeNardo; Lisa M. Coussens; Michael Karin; Ananda W. Goldrath; Randall S. Johnson

T cells can inhibit tumor growth, but their function in the tumor microenvironment is often suppressed. Many solid tumors exhibit abundant macrophage infiltration and low oxygen tension, yet how hypoxic conditions may affect innate immune cells and their role in tumor progression is poorly understood. Targeted deletion of the hypoxia-responsive transcription factor hypoxia-inducible factor-1α (HIF-1α) in macrophages in a progressive murine model of breast cancer resulted in reduced tumor growth, although vascular endothelial growth factor-A levels and vascularization were unchanged. Tumor-associated macrophages can suppress tumor-infiltrating T cells by several mechanisms, and we found that hypoxia powerfully augmented macrophage-mediated T-cell suppression in vitro in a manner dependent on macrophage expression of HIF-1α. Our findings link the innate immune hypoxic response to tumor progression through induction of T-cell suppression in the tumor microenvironment.


Journal of Immunology | 2007

Cutting edge: Essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis.

Carole Peyssonnaux; Pilar Cejudo-Martin; Andrew Doedens; Annelies S. Zinkernagel; Randall S. Johnson; Victor Nizet

Sepsis, the leading cause of death in intensive care units, reflects a detrimental host response to infection in which bacteria or LPS act as potent activators of immune cells, including monocytes and macrophages. In this report, we show that LPS raises the level of the transcriptional regulator hypoxia-inducible factor-1α (HIF-1α) in macrophages, increasing HIF-1α and decreasing prolyl hydroxylase mRNA production in a TLR4-dependent fashion. Using murine conditional gene targeting of HIF-1α in the myeloid lineage, we demonstrate that HIF-1α is a critical determinant of the sepsis phenotype. HIF-1α promotes the production of inflammatory cytokines, including TNF-α, IL-1, IL-4, IL-6, and IL-12, that reach harmful levels in the host during early sepsis. HIF-1α deletion in macrophages is protective against LPS-induced mortality and blocks the development of clinical markers including hypotension and hypothermia. Inhibition of HIF-1α activity may thus represent a novel therapeutic target for LPS-induced sepsis.


Nature Reviews Immunology | 2012

FOXO transcription factors throughout T cell biology

Stephen M. Hedrick; Rodrigo Hess Michelini; Andrew Doedens; Ananda W. Goldrath; Erica L. Stone

The outcome of an infection with any given pathogen varies according to the dosage and route of infection, but, in addition, the physiological state of the host can determine the efficacy of clearance, the severity of infection and the extent of immunopathology. Here we propose that the forkhead box O (FOXO) transcription factor family — which is central to the integration of growth factor signalling, oxidative stress and inflammation — provides connections between physical well-being and the form and magnitude of an immune response. We present a case that FOXO transcription factors guide T cell differentiation and function in a context-driven manner, and might provide a link between metabolism and immunity.


Nature Immunology | 2013

Transcriptional insights into the CD8+ T cell response to infection and memory T cell formation

J. Adam Best; David A. Blair; Jamie Knell; Edward Yang; Viveka Mayya; Andrew Doedens; Michael L. Dustin; Ananda W. Goldrath

After infection, many factors coordinate the population expansion and differentiation of CD8+ effector and memory T cells. Using data of unparalleled breadth from the Immunological Genome Project, we analyzed the CD8+ T cell transcriptome throughout infection to establish gene-expression signatures and identify putative transcriptional regulators. Notably, we found that the expression of key gene signatures can be used to predict the memory-precursor potential of CD8+ effector cells. Long-lived memory CD8+ cells ultimately expressed a small subset of genes shared by natural killer T and γδ T cells. Although distinct inflammatory milieu and T cell precursor frequencies influenced the differentiation of CD8+ effector and memory populations, core transcriptional signatures were regulated similarly, whether polyclonal or transgenic, and whether responding to bacterial or viral model pathogens. Our results provide insights into the transcriptional regulation that influence memory formation and CD8+ T cell immunity.


Journal of Experimental Medicine | 2013

Differentiation of CD8 memory T cells depends on Foxo1

Rodrigo Hess Michelini; Andrew Doedens; Ananda W. Goldrath; Stephen M. Hedrick

The transcription factor Foxo1 is required for the differentiation of memory CD8+ T cells, and its absence hinders clearance of secondary infections.


Nature | 2016

S -2-hydroxyglutarate regulates CD8 + T-lymphocyte fate

Petros A. Tyrakis; Asis Palazon; David Macias; Kian Leong Lee; Anthony T. Phan; Pedro Veliça; Jia You; Grace Sushin Chia; Jingwei Sim; Andrew Doedens; Alice Abelanet; Colin E. Evans; John R. Griffiths; Lorenz Poellinger; Ananda W. Goldrath; Randall S. Johnson

R-2-hydroxyglutarate accumulates to millimolar levels in cancer cells with gain-of-function isocitrate dehydrogenase 1/2 mutations. These levels of R-2-hydroxyglutarate affect 2-oxoglutarate-dependent dioxygenases. Both metabolite enantiomers, R- and S-2-hydroxyglutarate, are detectible in healthy individuals, yet their physiological function remains elusive. Here we show that 2-hydroxyglutarate accumulates in mouse CD8+ T cells in response to T-cell receptor triggering, and accumulates to millimolar levels in physiological oxygen conditions through a hypoxia-inducible factor 1-alpha (HIF-1α)-dependent mechanism. S-2-hydroxyglutarate predominates over R-2-hydroxyglutarate in activated T cells, and we demonstrate alterations in markers of CD8+ T-cell differentiation in response to this metabolite. Modulation of histone and DNA demethylation, as well as HIF-1α stability, mediate these effects. S-2-hydroxyglutarate treatment greatly enhances the in vivo proliferation, persistence and anti-tumour capacity of adoptively transferred CD8+ T cells. Thus, S-2-hydroxyglutarate acts as an immunometabolite that links environmental context, through a metabolic–epigenetic axis, to immune fate and function.


Parasitology | 2000

Identification of a new C-type lectin, TES-70, secreted by infective larvae of Toxocara canis, which binds to host ligands.

Alex Loukas; Andrew Doedens; Martin Hintz; Rick M. Maizels

Infective larvae of the dog roundworm Toxocara canis survive in the tissues of their hosts for extended periods in a state of developmental arrest, successfully evading immune destruction. This survival strategy is thought to be mediated by T. canis excretory/secretory (TES) products which downregulate or divert the immune response. We purified one of the major TES products, TES-70 and gained amino acid sequence from 4 tryptic peptides. These peptides were matched to a predicted protein from a cDNA that was isolated by expression screening a T. canis cDNA library with mouse anti-TES serum. The predicted protein (Tc-CTL-4) is similar to, but larger than, Tc-CTL-1, a 32-kDa C-type lectin secreted by T. canis larvae. Tc-CTL-4 has a signal peptide, 2 Cys-rich domains and a C-terminal calcium-dependent C-type lectin domain that shares sequence similarity with host immune cell receptors such as macrophage mannose receptor and CD23. The lectin domain was expressed in bacteria and antiserum to the purified recombinant protein was used to confirm that Tc-ctl-4 did encode the native TES-70 glycoprotein. TES-70 selectively bound to ligands on the surface of Madin-Darby Canine Kidney cells in vitro in a calcium-dependent manner, inhibitable by mammalian serum, indicating that a host glycan is the native ligand for this new parasite lectin.

Collaboration


Dive into the Andrew Doedens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark P. Rubinstein

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Victor Nizet

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Cole

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Edward Yang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge