Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew E. Souzis is active.

Publication


Featured researches published by Andrew E. Souzis.


Materials Science Forum | 2004

Advanced PVT Growth of 2 & 3-Inch Diameter 6H SiC Crystals

Thomas E. Anderson; Donovan L. Barrett; J. Chen; W.T. Elkington; Ejiro Emorhokpor; Avinash K. Gupta; Cheyenne Johnson; R.H. Hopkins; Charles Martin; Thomas Kerr; Edward Semenas; Andrew E. Souzis; Charles D. Tanner; Murugesu Yoganathan; Ilya Zwieback

Abstract. The Wide Bandgap Materials Group of II-VI Inc., develops, manufactures and markets n+ and semi-insulating (SI) 6H SiC crystals, including vanadium-compensated and V-free. The PVT growth process is tuned to produce high-quality semi-insulating 6H SiC boules with micropipe densities below 15 cm (for 2-inch wafers) and below 70 cm (for 3-inch wafers). Room temperature resistivity for 2-inch and 3-inch SI V-doped wafers is greater than 10 Ω·cm and 10 Ω·cm, respectively. A novel synthesis process is used for the production of high-purity polycrystalline SiC source, yielding a material in which most impurities are below their GDMS detection limits. An advanced PVT process (APVT) has been developed for the growth of V-free SI 6H SiC crystals. These APVT SiC crystals contain boron below 6.2·10cm, nitrogen below 4.0·10cm and demonstrate semi-insulating behavior with ρ between 10 and 10 Ω·cm. Photoluminescence and EPR of V-free 6H SiC has been studied and EPR data have been assigned to native point defects (C vacancy, Si antisite and CVAC-CSi pair).


Materials Science Forum | 2006

Growth and Characterization of Large Diameter 6H and 4H SiC Single Crystals

Avinash K. Gupta; Edward Semenas; Ejiro Emorhokpor; J. Chen; Ilya Zwieback; Andrew E. Souzis; Thomas E. Anderson

Over the past year, II-VI has transitioned from 2” to 3” commercial SiC substrates. Large-diameter semi-insulating 6H-SiC and n-type 4H-SiC single crystals are grown using the Advanced PVT growth process. Expansion of boule diameter from 2 to 3 and up to 4.25 inches has been carried out using a specially designed growth technique. Stable semi-insulating properties in 6H-SiC are achieved by precise vanadium compensation. The technique of compensation is optimized to produce a controlled and spatially uniform distribution of vanadium and high and spatially uniform electrical resistivity reaching 10 10 – 1011 ·cm. N-type 3-inch 4H-SiC crystals are grown using doping with nitrogen, and 3-inch 4H-SiC substrates show uniform resistivity of about 0.018 ·cm. The best quality semiinsulating (SI) 3” 6H-SiC substrates demonstrate micropipe density of 3 cm-2, and n-type 3” 4H-SiC substrates - about 1 cm-2. X-ray rocking curve topography of the produced 3” SiC substrates is used for evaluation of their crystal quality.


Materials Science Forum | 2009

Microhardness of 6H- and 4H-SiC Substrates

Charles R. Eddy; Ping Wu; Ilya Zwieback; Brenda L. VanMil; Rachael L. Myers-Ward; Joseph L. Tedesco; Andrew E. Souzis; D. Kurt Gaskill

Knoop microhardness assessments were conducted on a variety of 6H- and 4H-SiC substrates to assess any appreciable differences that may need to be considered in wafer manufacture and general application. Nitrogen-doped, vanadium-doped and unintentionally doped (UID) substrates with both on-axis and 8° off-axis orientations were assessed. In general, the Knoop hardness values fell in the 2000 to 2500 kg/mm2 range (equivalent to approximately 20 to 25 GPa). Hardness values measured in the <1100> crystal direction were significantly higher than in the <11-20> direction. Undoped and vanadium-doped samples were harder than nitrogen-doped samples. For both 6H and 4H nitrogen-doped samples, the hardness was as much as 10% higher for 8° offcut wafers than for on-axis.


Materials Science Forum | 2005

Growth of Undoped (Vanadium-Free) Semi-Insulating 6H-SiC Single Crystals

Thomas E. Anderson; Donovan L. Barrett; J. Chen; Ejiro Emorhokpor; Avinash K. Gupta; R.H. Hopkins; Andrew E. Souzis; Charles D. Tanner; Murugesu Yoganathan; Ilya Zwieback

II-VI has developed an Advanced PVT (APVT) process for the growth of nominally undoped (vanadium-free) semi-insulating 2” and 3” diameter 6H-SiC crystals with room temperature resistivity up to 1010 W·cm. The process utilizes high-purity SiC source and employs special measures aimed at the reduction of the impurity background. The APVT-grown material demonstrates concentrations of B and N reduced to about 2·1015cm-3. Wafer resistivity has been studied and correlated with Schottky barrier capacitance, yielding the density of deep compensating centers in 6H-SiC in the low 1015 cm-3 range for both ntype and p-type material. The nearly equal density of deep donors and deep acceptors ndicates that the centers responsible for the intrinsic compensation can be amphoteric. TheEPR density of spins from free carbon vacancies is about 1014 cm-3. It is also hypothesized that impurity-vacancy complexes can be present in the undoped material and participate in compensation.


MRS Proceedings | 2010

Growth of Large Diameter 6H SI and 4H n+ SiC Single Crystals

Avinash K. Gupta; Ping Wu; Varatharajan Rengarajan; Xueping Xu; Murugesu Yoganathan; Cristopher Martin; Ejiro Emorhokpor; Andrew E. Souzis; Ilya Zwieback; Thomas E. Anderson

SiC single crystals are grown at II-VI by the seeded sublimation technique. The process has been scaled up and optimized to support commercial production of high-quality 100 mm diameter, Semi-Insulating (SI) 6H substrates and 100 mm 4H n+ substrates. The growth process incorporates special elements aimed at achieving uniform sublimation of the source, steady growth rate, uniform doping and reduced presence of background impurities. Semi-insulating 6H substrates are produced using precise vanadium compensation. Vanadium doping is optimized to yield SI material with very high resistivity and low capacitance. Crystal quality of the substrates is evaluated using a wide variety of techniques. Specific defects, their interaction and evolution during growth are described with emphasis on micropipes and dislocations. The current quality of the 6H SI and 4H n+ crystals grown at II-VI is summarized.


Materials Science Forum | 2005

Growth of Large Diameter SiC Crystals by Advanced Physical Vapor Transport

Thomas E. Anderson; Donovan L. Barrett; J. Chen; Ejiro Emorhokpor; Avinash K. Gupta; R.H. Hopkins; Andrew E. Souzis; Charles D. Tanner; Murugesu Yoganathan; Ilya Zwieback; W. J. Choyke; Robert P. Devaty; Fei Yan

Semi-insulating 6H SiC substrates, 2”, 3” and 100mm in diameter, and n+ 4H SiC substrates, 2” and 3” in diameter, are grown at II-VI using the Advanced Physical Vapor Transport (APVT) technique [1]. The process utilizes high-purity SiC source and employs special measures aimed at the reduction of background contamination. Semi-insulating properties are achieved by precise vanadium compensation, which yields substrates with stable and uniform electrical resistivity reaching ~ 1011 Ω-cm and higher. Conductive n+ 4H SiC crystals with the spatially uniform resistivity of 0.02 W-cm are grown using nitrogen doping. Crystal quality of the substrates, their electrical properties and low temperature photoluminescence are discussed.


Materials Science Forum | 2008

Status of Large Diameter SiC Single Crystals at II-VI

Avinash K. Gupta; Ilya Zwieback; Andrew E. Souzis; Murugesu Yoganathan; Thomas E. Anderson

II-VI is developing large-diameter SiC crystals to be used as lattice-matched, high thermal conductivity substrates for new generation GaN-based and SiC-based semiconductor devices. Large-diameter 6H SiC single crystals are grown at II-VI using our Advanced PVT sublimation growth process. Stable SI properties are achieved by compensation with vanadium, which results in high and spatially uniform resistivity, on the order of 1011 Ohm-cm. The quality of the presently grown 100 mm 6H SI substrates has been dramatically improved [1], and they are free of edge defects. Micropipe density in the 100 mm 6H SI substrates ranges from 2 to 8 cm-2 and dislocation density from 3·104 to 6·104 cm-2. X-ray rocking curves measured on as-sawn 100 mm 6H wafers showed edge-to-edge lattice curvature () between 0.1° and 0.3° and FWHM of the rocking curve between 50 and 100 arc-seconds


Archive | 2005

Low-Doped Semi-Insulating Sic Crystals and Method

J. Chen; Ilya Zwieback; Avinash K. Gupta; Donovan L. Barrett; R.H. Hopkins; Edward Semenas; Thomas A. Anderson; Andrew E. Souzis


Archive | 2006

METHOD OF AND SYSTEM FOR FORMING SIC CRYSTALS HAVING SPATIALLY UNIFORM DOPING IMPURITIES

Avinash K. Gupta; Edward Semenas; Ilya Zwieback; Donovan L. Barrett; Andrew E. Souzis


Archive | 2009

System for Forming SiC Crystals Having Spatially Uniform Doping Impurities

Avinash K. Gupta; Edward Semenas; Ilya Zwieback; Donovan L. Barrett; Andrew E. Souzis

Collaboration


Dive into the Andrew E. Souzis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge