Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew F.G. Quest is active.

Publication


Featured researches published by Andrew F.G. Quest.


International Review of Cell and Molecular Biology | 2013

Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration.

Roberto Bravo; Valentina Parra; Damián Gatica; Andrea E. Rodriguez; Natalia Torrealba; Felipe Paredes; Zhao V. Wang; Antonio Zorzano; Joseph A. Hill; Enrique Jaimovich; Andrew F.G. Quest; Sergio Lavandero

The endoplasmic reticulum (ER) is a dynamic intracellular organelle with multiple functions essential for cellular homeostasis, development, and stress responsiveness. In response to cellular stress, a well-established signaling cascade, the unfolded protein response (UPR), is activated. This intricate mechanism is an important means of re-establishing cellular homeostasis and alleviating the inciting stress. Now, emerging evidence has demonstrated that the UPR influences cellular metabolism through diverse mechanisms, including calcium and lipid transfer, raising the prospect of involvement of these processes in the pathogenesis of disease, including neurodegeneration, cancer, diabetes mellitus and cardiovascular disease. Here, we review the distinct functions of the ER and UPR from a metabolic point of view, highlighting their association with prevalent pathologies.


Journal of Cell Science | 2002

Caspase-dependent initiation of apoptosis and necrosis by the Fas receptor in lymphoid cells: onset of necrosis is associated with delayed ceramide increase

Claudio Hetz; Martin Hunn; Patricio Rojas; Vicente A. Torres; Lisette Leyton; Andrew F.G. Quest

Engagement of the Fas receptor promotes apoptosis by activation of caspases. In addition, alterations in plasma membrane lipid orientation and intracellular ceramide levels are often observed. In A20 B-lymphoma cells, FasL-induced cell death and phosphatidylserine (PS) externalization were completely prevented by the generic caspase inhibitor z-VAD-fmk. By contrast, the caspase-3 inhibitor Ac-DEVD-cho only partially restored cell viability and had no effect on surface exposure of PS. Flow cytometric analysis after FasL treatment identified two populations of dead cells. In one, death was dependent on caspase-3 and paralleled by DNA fragmentation and cell shrinkage. In the second, death occurred in the absence of caspase-3 activity and apoptotic features but was also blocked by zVAD-fmk. By morphological criteria these were identified as apoptotic and necrotic cells, respectively. Using fluorescent substrates, caspase-3 activity was detected only in the apoptotic cell population, whereas caspase-8 activity was detected in both. Both forms of caspase-8-dependent cell death were also detected downstream of Fas in Jurkat T-cells, where Fas-dependent PS externalization and delayed ceramide production, which is similar to results shown here in A20 cells, have been reported. However, for Raji B-cells, lacking lipid scrambling and ceramide production in response to Fas activation, only apoptosis was detected. Short-chain C2- or C6-ceramides, but not the respective inactive dihydro compounds or treatment with bacterial sphingomyelinase, induced predominantly necrotic rather than apoptotic cell death in A20 B-, Raji B- and Jurkat T-cells. Thus, delayed elevation of ceramide is proposed to promote necrosis in those Fas-stimulated cells where caspase-8 activation was insufficient to trigger caspase-3-dependent apoptosis.


Journal of Cellular and Molecular Medicine | 2008

Caveolin-1: an ambiguous partner in cell signalling and cancer.

Andrew F.G. Quest; Jorge L. Gutiérrez-Pajares; Vicente A. Torres

•  Introduction •  The caveolins •  Caveolin‐1 in cell physiology ‐  Caveolin‐1 distribution ‐  Caveolin‐1 and internalization ‐  Caveolin‐1 and cholesterol ‐  Regulation of caveolin‐1 expression ‐  Caveolin‐1 in signal transduction ‐  Alternative mechanisms of caveolin‐1‐mediated control in signalling ‐  Control of transcription ‐  Other modes of control ‐  Cell proliferation ‐  Cell death and apoptosis •  Caveolin‐1 in cancer ‐  The tumour suppressor hypothesis ‐  Caveolin‐1 in multi‐drug resistance and metastasis •  Concluding remarks


Proceedings of the National Academy of Sciences of the United States of America | 2006

Casein kinase 2 (CK2) increases survivin expression via enhanced β-catenin–T cell factor/lymphoid enhancer binding factor-dependent transcription

J. C. Tapia; Vicente A. Torres; D. A. Rodriguez; L. Leyton; Andrew F.G. Quest

Increased expression of casein kinase 2 (CK2) is associated with hyperproliferation and suppression of apoptosis in cancer. Mutations in the tumor suppressor APC (adenomatous polyposis coli) are frequent in colon cancer and often augment β-catenin–T cell factor (Tcf)/lymphoid enhancer binding factor (Lef)-dependent transcription of genes such as c-myc and cyclin-D1. CK2 has also been implicated recently in the regulation of β-catenin stability. To identify mechanisms by which CK2 promotes survival, effects of the specific CK2 inhibitors 4,5,6,7-tetrabromobenzotriazole (TBB) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole were assessed. TBB and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole significantly decreased proliferation and increased apoptosis of HT29(US) colon cancer cells. RT-PCR and immunoblot analysis revealed that both inhibitors decreased survivin mRNA and protein levels in HT29(US) cells. Similar effects were observed with TBB in human DLD-1 and SW-480 colorectal cells as well as ZR-75 breast cancer cells and HEK-293T embryonic kidney cells. Expression of GFP–CK2α in HEK-293T cells resulted in β-catenin–Tcf/Lef-dependent up-regulation of survivin and increased resistance to anticancer drugs. Augmented β-catenin–Tcf/Lef-dependent transcription and resistance to apoptosis observed upon GFP–CK2α expression were abolished by TBB. Alternatively, HEK-293T cells expressing GFP–survivin were resistant to TBB-induced apoptosis. Finally, siRNA-mediated down-regulation of CK2α in HEK-293T cells coincided with reduced β-catenin and survivin levels. Taken together, these results suggest that CK2 kinase activity promotes survival by increasing survivin expression via β-catenin–Tcf/Lef-mediated transcription. Hence, selective CK2 inhibition or down-regulation in tumors may provide an attractive opportunity for the development of novel cancer therapies.


Current Biology | 2001

Thy-1 binds to integrin β3 on astrocytes and triggers formation of focal contact sites

Lisette Leyton; Pascal Schneider; Cecilia V. Labra; Curzio Rüegg; Claudio Hetz; Andrew F.G. Quest; Claude Bron

BACKGROUND Thy-1 is an abundant neuronal glycoprotein in mammals. Despite such prevalence, Thy-1 function remains largely obscure in the absence of a defined ligand. Astrocytes, ubiquitous cells of the brain, express a putative Thy-1 ligand that prevents neurite outgrowth. In this paper, a ligand molecule for Thy-1 was identified, and the consequences of Thy-1 binding for astrocyte function were investigated. RESULTS Thy-1 has been implicated in cell adhesion and, indeed, all known Thy-1 sequences were found to contain an integrin binding, RGD-like sequence. Thy-1 interaction with beta3 integrin on astrocytes was demonstrated in an adhesion assay using a thymoma line (EL-4) expressing high levels of Thy-1. EL-4 cells bound to astrocytes five times more readily than EL-4(-f), control cells lacking Thy-1. Binding was blocked by either anti-Thy-1 or anti-beta3 antibodies, by RGD-related peptides, or by soluble Thy-1-Fc chimeras. However, neither RGE/RLE peptides nor Thy-1(RLE)-Fc fusion protein inhibited the interaction. Immobilized Thy-1-Fc, but not Thy-1(RLE)-Fc fusion protein supported the attachment and spreading of astrocytes in a Mn(2+)-dependent manner. Binding to Thy-1-Fc was inhibited by RGD peptides. Moreover, vitronectin, fibrinogen, denatured collagen (dcollagen), and a kistrin-derived peptide, but not fibronectin, also mediated Mn(2+)-dependent adhesion, suggesting the involvement of beta3 integrin. The addition of Thy-1 to matrix-bound astrocytes induced recruitment of paxillin, vinculin, and focal adhesion kinase (FAK) to focal contacts and increased tyrosine phosphorylation of proteins such as p130(Cas) and FAK. Furthermore, astrocyte binding to immobilized Thy-1-Fc alone was sufficient to promote focal adhesion formation and phosphorylation on tyrosine. CONCLUSIONS Thy-1 binds to beta3 integrin and triggers tyrosine phosphorylation of focal adhesion proteins in astrocytes, thereby promoting focal adhesion formation, cell attachment, and spreading.


The International Journal of Biochemistry & Cell Biology | 2012

Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics

Roberto Bravo; Tomás Gutierrez; Felipe Paredes; Damián Gatica; Andrea E. Rodriguez; Zully Pedrozo; Mario Chiong; Valentina Parra; Andrew F.G. Quest; Beverly A. Rothermel; Sergio Lavandero

Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER-mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders.


Current Molecular Medicine | 2008

Cell Death by Necrosis, a Regulated Way to Go

Mauricio Henriquez; Ricardo Armisen; Andrés Stutzin; Andrew F.G. Quest

Apoptosis is a programmed form of cell death with well-defined morphological traits that are often associated with activation of caspases. More recently evidence has become available demonstrating that upon caspase inhibition alternative programs of cell death are executed, including ones with features characteristic of necrosis. These findings have changed our view of necrosis as a passive and essentially accidental form of cell death to that of an active, regulated and controllable process. Also necrosis has now been observed in parallel with, rather than as an alternative pathway to, apoptosis. Thus, cell death responses are extremely flexible despite being programmed. In this review, some of the hallmarks of different programmed cell death modes have been highlighted before focusing the discussion on necrosis. Obligatory events associated with this form of cell death include uncompensated cell swelling and related changes at the plasma membrane. In this context, representatives of the transient receptor channel family and their regulation are discussed. Also mechanisms that lead to execution of the necrotic cell death program are highlighted. Emphasis is laid on summarizing our understanding of events that permit switching between cell death modes and how they connect to necrosis. Finally, potential implications for the treatment of some disease states are mentioned.


Journal of Cell Science | 2006

Caveolin-1 controls cell proliferation and cell death by suppressing expression of the inhibitor of apoptosis protein survivin

Vicente A. Torres; Julio C. Tapia; Diego A. Rodriguez; Mario Párraga; Pamela Lisboa; Margarita Montoya; Lisette Leyton; Andrew F.G. Quest

Caveolin-1 is suggested to act as a tumor suppressor. We tested the hypothesis that caveolin-1 does so by repression of survivin, an Inhibitor of apoptosis protein that regulates cell-cycle progression as well as apoptosis and is commonly overexpressed in human cancers. Ectopic expression of caveolin-1 in HEK293T and ZR75 cells or siRNA-mediated silencing of caveolin-1 in NIH3T3 cells caused downregulation or upregulation of survivin mRNA and protein, respectively. Survivin downregulation in HEK293T cells was paralleled by reduced cell proliferation, increases in G0-G1 and decreases in G2-M phase of the cell cycle. In addition, apoptosis was evident, as judged by several criteria. Importantly, expression of green fluorescent protein-survivin in caveolin-1-transfected HEK293T cells restored cell proliferation and viability. In addition, expression of caveolin-1 inhibited transcriptional activity of a survivin promoter construct in a β-catenin-Tcf/Lef-dependent manner. Furthermore, in HEK293T cells caveolin-1 associated with β-catenin and inhibited Tcf/Lef-dependent transcription. Similar results were obtained upon caveolin-1 expression in DLD1 cells, where APC mutation leads to constitutive activation of β-catenin-Tcf/Lef-mediated transcription of survivin. Taken together, these results suggest that anti-proliferative and pro-apoptotic properties of caveolin-1 may be attributed to reduced survivin expression via a mechanism involving diminished β-catenin-Tcf/Lef-dependent transcription.


Arthritis & Rheumatism | 2010

Disruption of tight junction structure in salivary glands from Sjögren's syndrome patients is linked to proinflammatory cytokine exposure

Patricia Ewert; Sergio Aguilera; Cecilia Alliende; Yoon-Jeoung Kwon; Amelina Albornoz; Claudio Molina; Ulises Urzúa; Andrew F.G. Quest; Nancy Olea; Isabel Castro; María-José Barrera; Marcela A. Hermoso; Cecilia Leyton; María-Julieta González

OBJECTIVE Disorganization of acinar cell apical microvilli and the presence of stromal collagen in the acinar lumen suggest that the labial salivary gland (LSG) barrier function is impaired in patients with Sjögrens syndrome. Tight junctions define cell polarity and regulate the paracellular flow of ions and water, crucial functions of acinar cells. This study was undertaken to evaluate the expression and localization of tight junction proteins in LSGs from patients with SS and to determine in vitro the effects of tumor necrosis factor alpha (TNFalpha) and interferon-gamma (IFNgamma) on tight junction integrity of isolated acini from control subjects. METHODS Twenty-two patients and 15 controls were studied. The messenger RNA and protein levels of tight junction components (claudin-1, claudin-3, claudin-4, occludin, and ZO-1) were determined by semiquantitative reverse transcriptase-polymerase chain reaction and Western blotting. Tight junction protein localization was determined by immunohistochemistry. Tight junction ultrastructure was examined by transmission electron microscopy. Isolated acini from control subjects were treated with TNFalpha and IFNgamma. RESULTS Significant differences in tight junction protein levels were detected in patients with SS. ZO-1 and occludin were strongly down-regulated, while claudin-1 and claudin-4 were overexpressed. Tight junction proteins localized exclusively to apical domains in acini and ducts of LSGs from controls. In SS patients, the ZO-1 and occludin the apical domain presence of decreased, while claudin-3 and claudin-4 was redistributed to the basolateral plasma membrane. Exposure of isolated control acini to TNFalpha and IFNgamma reproduced these alterations in vitro. Ultrastructural analysis associated tight junction disorganization with the presence of endocytic vesicles containing electron-dense material that may represent tight junction components. CONCLUSION Our findings indicate that local cytokine production in LSGs from SS patients may contribute to the secretory gland dysfunction observed in SS patients by altering tight junction integrity of epithelial cells, thereby decreasing the quality and quantity of saliva.


Molecular and Cellular Biology | 2007

E-Cadherin Is Required for Caveolin-1-Mediated Down-Regulation of the Inhibitor of Apoptosis Protein Survivin via Reduced β-Catenin-Tcf/Lef-Dependent Transcription

Vicente A. Torres; Julio C. Tapia; Diego A. Rodriguez; Alvaro Lladser; Cristian Arredondo; Lisette Leyton; Andrew F.G. Quest

ABSTRACT Caveolin-1 reportedly acts as a tumor suppressor and promotes events associated with tumor progression, including metastasis. The molecular mechanisms underlying such radical differences in function are not understood. Recently, we showed that caveolin-1 inhibits expression of the inhibitor of apoptosis protein survivin via a transcriptional mechanism involving the β-catenin-Tcf/Lef pathway. Surprisingly, while caveolin-1 expression decreased survivin mRNA and protein levels in HT29(ATCC) human colon cancer cells, this was not the case in metastatic HT29(US) cells. Survivin down-regulation was paralleled by coimmunoprecipitation and colocalization of caveolin-1 with β-catenin in HT29(ATCC) but not HT29(US) cells. Unlike HT29(ATCC) cells, HT29(US) cells expressed small amounts of E-cadherin that accumulated in intracellular patches rather than at the cell surface. Re-expression of E-cadherin in HT29(US) cells restored the ability of caveolin-1 to down-regulate β-catenin-Tcf/Lef-dependent transcription and survivin expression, as seen in HT29(ATCC) cells. In addition, coimmunoprecipitation and colocalization between caveolin-1 and β-catenin increased upon E-cadherin expression in HT29(US) cells. In human embryonic kidney HEK293T and HT29(US) cells, caveolin-1 and E-cadherin cooperated in suppressing β-catenin-Tcf/Lef-dependent transcription as well as survivin expression. Finally, mouse melanoma B16-F10 cells, another metastatic cell model with low endogenous caveolin-1 and E-cadherin levels, were characterized. In these cells, caveolin-1-mediated down-regulation of survivin in the presence of E-cadherin coincided with increased apoptosis. Thus, the absence of E-cadherin severely compromises the ability of caveolin-1 to develop activities potentially relevant to its role as a tumor suppressor.

Collaboration


Dive into the Andrew F.G. Quest's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge