Andrew Fielding
Queensland University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew Fielding.
Physica B-condensed Matter | 2000
R. Senesi; C. Andreani; Z.A. Bowden; D. Colognesi; E. Degiorgi; Andrew Fielding; J. Mayers; M. Nardone; J. Norris; M. Praitano; N.J. Rhodes; W. G. Stirling; J. Tomkinson; C. Uden
The VESUVIO project aims to provide unique prototype instrumentation at the ISIS-pulsed neutron source and to establish a routine experimental and theoretical program in neutron scattering spectroscopy at eV energies. This instrumentation will be specifically designed for high momentum, , and energy transfer inelastic neutron scattering studies of microscopic dynamical processes in materials and will represent a unique facility for EU researchers. It will allow to derive single-particle kinetic energies and single-particle momentum distributions, n(p), providing additional and/or complementary information to other neutron inelastic spectroscopic techniques.
Medical Physics | 2006
Laure Parent; Joao Seco; Phil Evans; Andrew Fielding; David R. Dance
This study focused on predicting the electronic portal imaging device (EPID) image of intensity modulated radiation treatment (IMRT) fields in the absence of attenuation material in the beam with Monte Carlo methods. As IMRT treatments consist of a series of segments of various sizes that are not always delivered on the central axis, large spectral variations may be observed between the segments. The effect of these spectral variations on the EPID response was studied with fields of various sizes and off-axis positions. A detailed description of the EPID was implemented in a Monte Carlo model. The EPID model was validated by comparing the EPID output factors for field sizes between 1 x 1 and 26 x 26 cm2 at the isocenter. The Monte Carlo simulations agreed with the measurements to within 1.5%. The Monte Carlo model succeeded in predicting the EPID response at the center of the fields of various sizes and offsets to within 1% of the measurements. Large variations (up to 29%) of the EPID response were observed between the various offsets. The EPID response increased with field size and with field offset for most cases. The Monte Carlo model was then used to predict the image of a simple test IMRT field delivered on the beam axis and with an offset. A variation of EPID response up to 28% was found between the on- and off-axis delivery. Finally, two clinical IMRT fields were simulated and compared to the measurements. For all IMRT fields, simulations and measurements agreed within 3%-0.2 cm for 98% of the pixels. The spectral variations were quantified by extracting from the spectra at the center of the fields the total photon yield (Ytotal), the photon yield below 1 MeV (Ylow), and the percentage of photons below 1 MeV (Plow). For the studied cases, a correlation was shown between the EPID response variation and Ytotal, Ylow, and Plow.
Physics in Medicine and Biology | 2007
Laure Parent; Andrew Fielding; David R. Dance; Joao Seco; Philip M. Evans
For EPID dosimetry, the calibration should ensure that all pixels have a similar response to a given irradiation. A calibration method (MC), using an analytical fit of a Monte Carlo simulated flood field EPID image to correct for the flood field image pixel intensity shape, was proposed. It was compared with the standard flood field calibration (FF), with the use of a water slab placed in the beam to flatten the flood field (WS) and with a multiple field calibration where the EPID was irradiated with a fixed 10x10 field for 16 different positions (MF). The EPID was used in its normal configuration (clinical setup) and with an additional 3 mm copper slab (modified setup). Beam asymmetry measured with a diode array was taken into account in MC and WS methods. For both setups, the MC method provided pixel sensitivity values within 3% of those obtained with the MF and WS methods (mean difference<1%, standard deviation<2%). The difference of pixel sensitivity between MC and FF methods was up to 12.2% (clinical setup) and 11.8% (modified setup). MC calibration provided images of open fields (5x5 to 20x20 cm2) and IMRT fields to within 3% of that obtained with WS and MF calibrations while differences with images calibrated with the FF method for fields larger than 10x10 cm2 were up to 8%. MC, WS and MF methods all provided a major improvement on the FF method. Advantages and drawbacks of each method were reviewed.
Medical Physics | 2010
Tanya Kairn; John Kenny; Scott Crowe; Andrew Fielding; R. D. Franich; Peter N. Johnston; Richard Knight; Christian M. Langton; D. Schlect; Jamie Trapp
PURPOSE The component modules in the standard BEAMnrc istribution may appear to be insufficient to model micro-multileaf collimators that have trifaceted leaf ends and complex leaf profiles. This note indicates, however, that accurate Monte Carlo simulations of radiotherapy beams defined by a complex collimation device can be completed using BEAMnrcs standard VARMLC component module. METHODS That this simple collimator model can produce spatially and dosimetrically accurate microcollimated fields is illustrated using comparisons with ion chamber and film measurements of the dose deposited by square and irregular fields incident on planar, homogeneous water phantoms. RESULTS Monte Carlo dose calculations for on-axis and off-axis fields are shown to produce good agreement with experimental values, even on close examination of the penumbrae. CONCLUSIONS The use of a VARMLC model of the micro-multileaf collimator, along with a commissioned model of the associated linear accelerator, is therefore recommended as an alternative to the development or use of in-house or third-party component modules for simulating stereotactic radiotherapy and radiosurgery treatments. Simulation parameters for the VARMLC model are provided which should allow other researchers to adapt and use this model to study clinical stereotactic radiotherapy treatments.
Physics in Medicine and Biology | 2008
Tanya Kairn; D Cassidy; P. Sandford; Andrew Fielding
This work validates the use of an amorphous-silicon, flat-panel electronic portal imaging device (a-Si EPID) for use as a gauge of patient or phantom radiological thickness, as an alternative to dosimetry. The response of the a-Si EPID is calibrated by adapting a technique previously applied to scanning liquid ion chamber EPIDs, and the stability, accuracy and reliability of this calibration are explored in detail. We find that the stability of this calibration, between different linacs at the same centre, is sufficient to justify calibrating only one of the EPIDs every month and using the calibration data thus obtained to perform measurements on all of the other linacs. Radiological thickness is shown to provide a reliable means of relating experimental measurements to the results of BEAMnrc Monte Carlo simulations of the linac-phantom-EPID system. For these reasons we suggest that radiological thickness can be used to verify radiotherapy treatment delivery and identify changes in the treatment field, patient position and target location, as well as patient physical thickness.
Journal of Medical Imaging and Radiation Oncology | 2015
Timothy Deegan; Rebecca Owen; Tanya Holt; Andrew Fielding; Jennifer Biggs; Matthew Parfitt; Alicia Coates
This investigation aimed to assess the consistency and accuracy of radiation therapists (RTs) performing cone beam computed tomography (CBCT) alignment to fiducial markers (FMs) (CBCTFM) and the soft tissue prostate (CBCTST).
Radiotherapy and Oncology | 2009
Scott Crowe; Tanya Kairn; Andrew Fielding
Recent advances in the planning and delivery of radiotherapy treatments have resulted in improvements in the accuracy and precision with which therapeutic radiation can be administered. As the complexity of the treatments increases it becomes more difficult to predict the dose distribution in the patient accurately. Monte Carlo methods have the potential to improve the accuracy of the dose calculations and are increasingly being recognised as the “gold standard” for predicting dose deposition in the patient. In this study, software has been developed that enables the transfer of treatment plan information from the treatment planning system to a Monte Carlo dose calculation engine. A database of commissioned linear accelerator models (Elekta Precise and Varian 2100CD at various energies) has been developed using the EGSnrc/BEAMnrc Monte Carlo suite. Planned beam descriptions and CT images can be exported from the treatment planning system using the DICOM framework. The information in these files is combined with an appropriate linear accelerator model to allow the accurate calculation of the radiation field incident on a modelled patient geometry. The Monte Carlo dose calculation results are combined according to the monitor units specified in the exported plan. The result is a 3D dose distribution that could be used to verify treatment planning system calculations. The software, MCDTK (Monte Carlo Dicom ToolKit), has been developed in the Java programming language and produces BEAMnrc and DOSXYZnrc input files, ready for submission on a high-performance computing cluster. The code has been tested with the Eclipse (Varian Medical Systems), Oncentra MasterPlan (Nucletron B.V.) and Pinnacle3 (Philips Medical Systems) planning systems. In this study the software was validated against measurements in homogenous and heterogeneous phantoms. Monte Carlo models are commissioned through comparison with quality assurance measurements made using a large square field incident on a homogenous volume of water. This study aims to provide a valuable confirmation that Monte Carlo calculations match experimental measurements for complex fields and heterogeneous media.
International Journal of Radiation Oncology Biology Physics | 2002
Andrew Fielding; Philip M. Evans; Catharine H. Clark
PURPOSE The precise shape of the three-dimensional dose distributions created by intensity-modulated radiotherapy means that the verification of patient position and setup is crucial to the outcome of the treatment. In this paper, we investigate and compare the use of two different image calibration procedures that allow extraction of patient anatomy from measured electronic portal images of intensity-modulated treatment beams. METHODS AND MATERIALS Electronic portal images of the intensity-modulated treatment beam delivered using the dynamic multileaf collimator technique were acquired. The images were formed by measuring a series of frames or segments throughout the delivery of the beams. The frames were then summed to produce an integrated portal image of the delivered beam. Two different methods for calibrating the integrated image were investigated with the aim of removing the intensity modulations of the beam. The first involved a simple point-by-point division of the integrated image by a single calibration image of the intensity-modulated beam delivered to a homogeneous polymethyl methacrylate (PMMA) phantom. The second calibration method is known as the quadratic calibration method and required a series of calibration images of the intensity-modulated beam delivered to different thicknesses of homogeneous PMMA blocks. Measurements were made using two different detector systems: a Varian amorphous silicon flat-panel imager and a Theraview camera-based system. The methods were tested first using a contrast phantom before images were acquired of intensity-modulated radiotherapy treatment delivered to the prostate and pelvic nodes of cancer patients at the Royal Marsden Hospital. RESULTS The results indicate that the calibration methods can be used to remove the intensity modulations of the beam, making it possible to see the outlines of bony anatomy that could be used for patient position verification. This was shown for both posterior and lateral delivered fields. CONCLUSIONS Very little difference between the two calibration methods was observed, so the simpler division method, requiring only the single extra calibration measurement and much simpler computation, was the favored method. This new method could provide a complementary tool to existing position verification methods, and it has the advantage that it is completely passive, requiring no further dose to the patient and using only the treatment fields.
Journal of Medical Imaging and Radiation Oncology | 2013
Timothy Deegan; Rebecca Owen; Tanya Holt; Jennifer Biggs; Alicia McCarthy; Matthew Parfitt; Andrew Fielding
As the use of fiducial markers (FMs) for the localisation of the prostate during external beam radiation therapy (EBRT) has become part of routine practice, radiation therapists (RTs) have become increasingly responsible for online image interpretation. The aim of this investigation was to quantify the limits of agreement (LoA) between RTs when localising to FMs with orthogonal kilovoltage (kV) imaging.
Journal of Physics: Condensed Matter | 1996
Andrew Fielding; David N. Timms; A C Evans; J Mayers
We report inelastic neutron scattering measurements of the neutron Compton profile, J(y), for Be and for D in polycrystalline [Formula: see text] over a range of momentum transfers, q between 27 and [Formula: see text]. The measurements were performed using the inverse geometry spectrometer eVS which is situated at the UK pulsed spallation neutron source ISIS. We have investigated deviations from impulse approximation (IA) scattering which are generically referred to as final-state effects (FSEs) using a method described by Sears. This method allows both the magnitude and the q dependence of the FSE to be studied. Analysis of the measured data was compared with analysis of numerical simulations based on the harmonic approximation and good agreement was found for both [Formula: see text] and Be. Finally we have shown how [Formula: see text], where V is the interatomic potential, can be extracted from the antisymmetric component of J(y).