Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew G. Fraser is active.

Publication


Featured researches published by Andrew G. Fraser.


Nature | 2003

Systematic functional analysis of the Caenorhabditis elegans genome using RNAi

Ravi S. Kamath; Andrew G. Fraser; Yan Dong; Gino Poulin; Richard Durbin; Monica Gotta; Alexander Kanapin; Nathalie Le Bot; Sergio Moreno; Marc Sohrmann; David P. Welchman; Peder Zipperlen; Julie Ahringer

A principal challenge currently facing biologists is how to connect the complete DNA sequence of an organism to its development and behaviour. Large-scale targeted-deletions have been successful in defining gene functions in the single-celled yeast Saccharomyces cerevisiae, but comparable analyses have yet to be performed in an animal. Here we describe the use of RNA interference to inhibit the function of ∼86% of the 19,427 predicted genes of C. elegans. We identified mutant phenotypes for 1,722 genes, about two-thirds of which were not previously associated with a phenotype. We find that genes of similar functions are clustered in distinct, multi-megabase regions of individual chromosomes; genes in these regions tend to share transcriptional profiles. Our resulting data set and reusable RNAi library of 16,757 bacterial clones will facilitate systematic analyses of the connections among gene sequence, chromosomal location and gene function in C. elegans.


Nature | 2013

A compendium of RNA-binding motifs for decoding gene regulation

Debashish Ray; Hilal Kazan; Kate B. Cook; Matthew T. Weirauch; Hamed Shateri Najafabadi; Xiao Li; Serge Gueroussov; Mihai Albu; Hong Zheng; Ally Yang; Hong Na; Manuel Irimia; Leah H. Matzat; Ryan K. Dale; Sarah A. Smith; Christopher A. Yarosh; Seth M. Kelly; Behnam Nabet; D. Mecenas; Weimin Li; Rakesh S. Laishram; Mei Qiao; Howard D. Lipshitz; Fabio Piano; Anita H. Corbett; Russ P. Carstens; Brendan J. Frey; Richard A. Anderson; Kristen W. Lynch; Luiz O. F. Penalva

RNA-binding proteins are key regulators of gene expression, yet only a small fraction have been functionally characterized. Here we report a systematic analysis of the RNA motifs recognized by RNA-binding proteins, encompassing 205 distinct genes from 24 diverse eukaryotes. The sequence specificities of RNA-binding proteins display deep evolutionary conservation, and the recognition preferences for a large fraction of metazoan RNA-binding proteins can thus be inferred from their RNA-binding domain sequence. The motifs that we identify in vitro correlate well with in vivo RNA-binding data. Moreover, we can associate them with distinct functional roles in diverse types of post-transcriptional regulation, enabling new insights into the functions of RNA-binding proteins both in normal physiology and in human disease. These data provide an unprecedented overview of RNA-binding proteins and their targets, and constitute an invaluable resource for determining post-transcriptional regulatory mechanisms in eukaryotes.


Nature Genetics | 2008

A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans

Insuk Lee; Ben Lehner; Catriona Crombie; Wendy S.W. Wong; Andrew G. Fraser; Edward M. Marcotte

The fundamental aim of genetics is to understand how an organisms phenotype is determined by its genotype, and implicit in this is predicting how changes in DNA sequence alter phenotypes. A single network covering all the genes of an organism might guide such predictions down to the level of individual cells and tissues. To validate this approach, we computationally generated a network covering most C. elegans genes and tested its predictive capacity. Connectivity within this network predicts essentiality, identifying this relationship as an evolutionarily conserved biological principle. Critically, the network makes tissue-specific predictions—we accurately identify genes for most systematically assayed loss-of-function phenotypes, which span diverse cellular and developmental processes. Using the network, we identify 16 genes whose inactivation suppresses defects in the retinoblastoma tumor suppressor pathway, and we successfully predict that the dystrophin complex modulates EGF signaling. We conclude that an analogous network for human genes might be similarly predictive and thus facilitate identification of disease genes and rational therapeutic targets.


Current Biology | 1999

Caenorhabditis elegans inhibitor of apoptosis protein (IAP) homologue BIR-1 plays a conserved role in cytokinesis

Andrew G. Fraser; Claerwen James; Gerard I. Evan; Michael O. Hengartner

BACKGROUND Inhibitor of apoptosis proteins (IAPs) suppress apoptotic cell death in several model systems and are highly conserved between insects and mammals. All IAPs contain at least one copy of the approximately 70 amino-acid baculovirus IAP repeat (BIR), and this domain is essential for the anti-apoptotic activity of the IAPs. Both the marked structural diversity of IAPs and the identification of BIR-containing proteins (BIRPs) in yeast, however, have led to the suggestion that BIRPs might play roles in other, as yet unidentified, cellular processes besides apoptosis. Survivin, a human BIRP, is upregulated 40-fold at G2-M phase and binds to mitotic spindles, although its role at the spindle is still unclear. RESULTS We have identified and characterised two Caenorhabditis elegans BIRPs,BIR-1 and BIR-2; these proteins are the only BIRPs in C. elegans. The bir-1 gene is highly expressed during embryogenesis with detectable expression throughout other stages of development; bir-2 expression is detectable only in adults and embryos. Overexpression of bir-1 was unable to inhibit developmentally occurring cell death in C. elegans and inhibition of bir-1 expression did not increase cell death. Instead, embryos lacking bir-1 were unable to complete cytokinesis and they became multinucleate. This cytokinesis defect could be partially suppressed by transgenic expression of survivin, the mammalian BIRP most structurally related to BIR-1, suggesting a conserved role for BIRPs in the regulation of cytokinesis. CONCLUSIONS BIR-1, a C. elegans BIRP, is probably not involved in the general regulation of apoptosis but is required for embryonic cytokinesis. We suggest that BIRPs may regulate cytoskeletal changes in diverse biological processes including cytokinesis and apoptosis.


Genome Biology | 2004

A first-draft human protein-interaction map.

Ben Lehner; Andrew G. Fraser

BackgroundProtein-interaction maps are powerful tools for suggesting the cellular functions of genes. Although large-scale protein-interaction maps have been generated for several invertebrate species, projects of a similar scale have not yet been described for any mammal. Because many physical interactions are conserved between species, it should be possible to infer information about human protein interactions (and hence protein function) using model organism protein-interaction datasets.ResultsHere we describe a network of over 70,000 predicted physical interactions between around 6,200 human proteins generated using the data from lower eukaryotic protein-interaction maps. The physiological relevance of this network is supported by its ability to preferentially connect human proteins that share the same functional annotations, and we show how the network can be used to successfully predict the functions of human proteins. We find that combining interaction datasets from a single organism (but generated using independent assays) and combining interaction datasets from two organisms (but generated using the same assay) are both very effective ways of further improving the accuracy of protein-interaction maps.ConclusionsThe complete network predicts interactions for a third of human genes, including 448 human disease genes and 1,482 genes of unknown function, and so provides a rich framework for biomedical research.


The EMBO Journal | 1997

IDENTIFICATION OF A DROSOPHILA MELANOGASTER ICE/CED-3-RELATED PROTEASE, DRICE

Andrew G. Fraser; Gerard I. Evan

Cysteine proteases of the ICE/CED‐3 family (caspases) are required for the execution of programmed cell death (PCD) in a wide range of multicellular organisms. Caspases are implicated in the execution of apoptosis in Drosophila melanogaster by the observation that expression of baculovirus p35, a caspase inhibitor, blocks cell death in vivo in Drosophila. We report here the identification and characterization of drICE, a D.melanogaster caspase. We show that overexpression of drICE sensitizes Drosophila cells to apoptotic stimuli and that expression of an N‐terminally truncated form of drICE rapidly induces apoptosis in Drosophila cells. Induction of apoptosis by rpr overexpression or by cycloheximide or etoposide treatment of Drosophila cells results in proteolytic processing of drICE. We further show that drICE is a cysteine protease that cleaves baculovirus p35 and Drosophila lamin DmO in vitro and that drICE is expressed at all the stages of Drosophila development at which PCD can be induced. Taken together, these results strongly argue that drICE is an apoptotic caspase that acts downstream of rpr. drICE is therefore the first unequivocal link between the molecular machinery of Drosophila cell death and the conserved machinery of Caenorhabditis elegans and vertebrates. Identification of drICE should facilitate the elucidation of upstream regulators and downstream targets of caspases by genetic screening.


Genome Research | 2011

Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation.

Joanna Y. Ip; Dominic Schmidt; Qun Pan; Arun K. Ramani; Andrew G. Fraser; Duncan T. Odom; Benjamin J. Blencowe

The rate of RNA polymerase II (Pol II) elongation can influence splice site selection in nascent transcripts, yet the extent and physiological relevance of this kinetic coupling between transcription and alternative splicing (AS) is not well understood. We performed experiments to perturb Pol II elongation and then globally compared AS patterns with genome-wide Pol II occupancy. RNA binding and RNA processing functions were significantly enriched among the genes with Pol II elongation inhibition-dependent changes in AS. Under conditions that interfere with Pol II elongation, including cell stress, increased Pol II occupancy was detected in the intronic regions flanking the alternative exons in these genes, and these exons generally became more included. A disproportionately high fraction of these exons introduced premature termination codons that elicited nonsense-mediated mRNA decay (NMD), thereby further reducing transcript levels. Our results provide evidence that kinetic coupling between transcription, AS, and NMD affords a rapid mechanism by which cells can respond to changes in growth conditions, including cell stress, to coordinate the levels of RNA processing factors with mRNA levels.


Nature Genetics | 2008

Evolutionary plasticity of genetic interaction networks

Julia Tischler; Ben Lehner; Andrew G. Fraser

Non-additive genetic interactions contribute to many genetic disorders, but they are extremely difficult to predict. Here we show that genetic interactions identified in yeast, unlike gene functions or protein interactions, are not highly conserved in animals. Genetic interactions are therefore unlikely to represent simple redundancy between genes or pathways, and genetic interactions from yeast do not directly predict genetic interactions in higher eukaryotes, including humans.


Nature Genetics | 2004

A probabilistic view of gene function

Andrew G. Fraser; Edward M. Marcotte

Cells are controlled by the complex and dynamic actions of thousands of genes. With the sequencing of many genomes, the key problem has shifted from identifying genes to knowing what the genes do; we need a framework for expressing that knowledge. Even the most rigorous attempts to construct ontological frameworks describing gene function (e.g., the Gene Ontology project) ultimately rely on manual curation and are thus labor-intensive and subjective. But an alternative exists: the field of functional genomics is piecing together networks of gene interactions, and although these data are currently incomplete and error-prone, they provide a glimpse of a new, probabilistic view of gene function. We outline such a framework, which revolves around a statistical description of gene interactions derived from large, systematically compiled data sets. In this probabilistic view, pleiotropy is implicit, all data have errors and the definition of gene function is an iterative process that ultimately converges on the correct functions. The relationships between the genes are defined by the data, not by hand. Even this comprehensive view fails to capture key aspects of gene function, not least their dynamics in time and space, showing that there are limitations to the model that must ultimately be addressed.


Genome Research | 2011

Genome-wide analysis of alternative splicing in Caenorhabditis elegans

Arun K. Ramani; John A. Calarco; Qun Pan; Sepand Mavandadi; Ying Wang; Andrew C. Nelson; Leo J. Lee; Quaid Morris; Benjamin J. Blencowe; Mei Zhen; Andrew G. Fraser

Alternative splicing (AS) plays a crucial role in the diversification of gene function and regulation. Consequently, the systematic identification and characterization of temporally regulated splice variants is of critical importance to understanding animal development. We have used high-throughput RNA sequencing and microarray profiling to analyze AS in C. elegans across various stages of development. This analysis identified thousands of novel splicing events, including hundreds of developmentally regulated AS events. To make these data easily accessible and informative, we constructed the C. elegans Splice Browser, a web resource in which researchers can mine AS events of interest and retrieve information about their relative levels and regulation across development. The data presented in this study, along with the Splice Browser, provide the most comprehensive set of annotated splice variants in C. elegans to date, and are therefore expected to facilitate focused, high resolution in vivo functional assays of AS function.

Collaboration


Dive into the Andrew G. Fraser's collaboration.

Top Co-Authors

Avatar

Ben Lehner

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catriona Crombie

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Julia Tischler

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

A. Gatherer

World Health Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Moller

World Health Organization

View shared research outputs
Top Co-Authors

Avatar

Edward M. Marcotte

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge