Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Goodyear is active.

Publication


Featured researches published by Andrew Goodyear.


Infection and Immunity | 2009

Protection from Pneumonic Infection with Burkholderia Species by Inhalational Immunotherapy

Andrew Goodyear; Lisa M. Kellihan; Helle Bielefeldt-Ohmann; Ryan M. Troyer; Katie L. Propst; Steven W. Dow

ABSTRACT Burkholderia mallei and B. pseudomallei are important human pathogens and cause the diseases glanders and melioidosis, respectively. Both organisms are highly infectious when inhaled and are inherently resistant to many antimicrobials, thus making it difficult to treat pneumonic Burkholderia infections. We investigated whether it was possible to achieve rapid protection against inhaled Burkholderia infection by using inhaled immunotherapy. For this purpose, cationic liposome DNA complexes (CLDC), which are potent activators of innate immunity, were used to elicit the activation of pulmonary innate immune responses. We found that mucosal CLDC administration before or shortly after bacterial challenge could generate complete or nearly complete protection from inhalational challenge with 100% lethal doses of B. mallei and B. pseudomallei. Protection was found to be dependent on the CLDC-mediated induction of gamma interferon responses in lung tissues and was partially dependent on the activation of NK cells. However, CLDC-mediated protection was not dependent on the induction of inducible nitric oxide synthase, as assessed by depletion studies. We concluded that the potent local activation of innate immune responses in the lung could be used to elicit rapid and nonspecific protection from aerosol exposure to both B. mallei and B. pseudomallei.


Journal of Immunology | 2005

Early Interaction of Yersinia pestis with APCs in the Lung

Catharine M. Bosio; Andrew Goodyear; Steven W. Dow

Despite the importance of pneumonic plague, little is known of the early pulmonary immune responses that occur following inhalation of Yersinia pestis. Therefore, we conducted studies to identify the early target cells for uptake of Y. pestis in the lungs following intratracheal or i.v. inoculation. Following intratracheal inoculation, Y. pestis was rapidly internalized primarily by a distinctive population of CD11c+DEC-205+CD11b− cells in the airways, whereas i.v. inoculation resulted in uptake primarily by CD11b+CD11c− macrophages and granulocytes in lung tissues. The airway cells internalized and were infected by Y. pestis, but did not support active replication of the organism. Intratracheal inoculation of Y. pestis resulted in rapid activation of airway CD11c+ cells, followed within 24 h by the selective disappearance of these cells from the airways and lungs and the accumulation of apoptotic CD11c+ cells in draining lymph nodes. When CD11c+ cells in the airways were depleted using liposomal clodronate before infection, this resulted in a significantly increased replication of Y. pestis in the lungs and dissemination to the spleen and draining lymph nodes. These findings suggest that CD11c+ cells in the airways play an important role in suppressing the initial replication and dissemination of inhaled Y. pestis, although these results will also require confirmation using fully virulent strains of Y. pestis. Depletion of these airway cells by Y. pestis may therefore be one strategy the organism uses to overcome pulmonary defenses following inhalation of the organism.


Journal of Immunological Methods | 2014

Optimization of murine small intestine leukocyte isolation for global immune phenotype analysis

Andrew Goodyear; Ajay Kumar; Steven W. Dow; Elizabeth P. Ryan

New efforts to understand complex interactions between diet, gut microbiota, and intestinal immunity emphasize the need for a standardized murine protocol that has been optimized for the isolation of lamina propria immune cells. In this study multiple mouse strains including BALB/c, 129S6/Sv/EvTac and ICR mice were utilized to develop an optimal protocol for global analysis of lamina propria leukocytes. Incubation temperature was found to significantly improve epithelial cell removal, while changes in media formulation had minor effects. Tissue weight was an effective method for normalization of solution volumes and incubation times. Collagenase digestion in combination with thermolysin was identified as the optimal method for release of leukocytes from tissues and global immunophenotyping, based on the criteria of minimizing marker cleavage, improving cell viability, and reagent cost. The effects of collagenase in combination with dispase or thermolysin on individual cell surface markers revealed diverse marker specific effects. Aggressive formulations cleaved CD8α, CD138, and B220 from the cell surface, and resulted in relatively higher expression levels of CD3, γδ TCR, CD5, DX5, Ly6C, CD11b, CD11c, MHC-II and CD45. Improved collagenase digestion significantly improved viability and reduced debris formation, eliminating the need for density gradient purification. Finally, we demonstrate that two different digestion protocols yield significant differences in detection of CD4(+) and CD8(+) T cells, NK cells, monocytes and interdigitating DC (iDC) populations, highlighting the importance and impact of cell collection protocols on assay outputs. The optimized protocol described herein will help assure the reproducibility and robustness of global assessment of lamina propria immune responses. Moreover, this technique may be applied to isolation of leukocytes from the entire gastrointestinal tract.


PLOS Pathogens | 2012

Nasal Acai polysaccharides potentiate innate immunity to protect against pulmonary Francisella tularensis and Burkholderia pseudomallei Infections.

Jerod A. Skyberg; MaryClare F. Rollins; Jeff Holderness; Nicole L. Marlenee; Igor A. Schepetkin; Andrew Goodyear; Steven W. Dow; Mark A. Jutila; David W. Pascual

Pulmonary Francisella tularensis and Burkholderia pseudomallei infections are highly lethal in untreated patients, and current antibiotic regimens are not always effective. Activating the innate immune system provides an alternative means of treating infection and can also complement antibiotic therapies. Several natural agonists were screened for their ability to enhance host resistance to infection, and polysaccharides derived from the Acai berry (Acai PS) were found to have potent abilities as an immunotherapeutic to treat F. tularensis and B. pseudomallei infections. In vitro, Acai PS impaired replication of Francisella in primary human macrophages co-cultured with autologous NK cells via augmentation of NK cell IFN-γ. Furthermore, Acai PS administered nasally before or after infection protected mice against type A F. tularensis aerosol challenge with survival rates up to 80%, and protection was still observed, albeit reduced, when mice were treated two days post-infection. Nasal Acai PS administration augmented intracellular expression of IFN-γ by NK cells in the lungs of F. tularensis-infected mice, and neutralization of IFN-γ ablated the protective effect of Acai PS. Likewise, nasal Acai PS treatment conferred protection against pulmonary infection with B. pseudomallei strain 1026b. Acai PS dramatically reduced the replication of B. pseudomallei in the lung and blocked bacterial dissemination to the spleen and liver. Nasal administration of Acai PS enhanced IFN-γ responses by NK and γδ T cells in the lungs, while neutralization of IFN-γ totally abrogated the protective effect of Acai PS against pulmonary B. pseudomallei infection. Collectively, these results demonstrate Acai PS is a potent innate immune agonist that can resolve F. tularensis and B. pseudomallei infections, suggesting this innate immune agonist has broad-spectrum activity against virulent intracellular pathogens.


PLOS Neglected Tropical Diseases | 2012

Burkholderia pseudomallei Known Siderophores and Hemin Uptake Are Dispensable for Lethal Murine Melioidosis

Brian H. Kvitko; Andrew Goodyear; Katie L. Propst; Steven W. Dow; Herbert P. Schweizer

Burkholderia pseudomallei is a mostly saprophytic bacterium, but can infect humans where it causes the difficult-to-manage disease melioidosis. Even with proper diagnosis and prompt therapeutic interventions mortality rates still range from >20% in Northern Australia to over 40% in Thailand. Surprisingly little is yet known about how B. pseudomallei infects, invades and survives within its hosts, and virtually nothing is known about the contribution of critical nutrients such as iron to the bacteriums pathogenesis. It was previously assumed that B. pseudomallei used iron-acquisition systems commonly found in other bacteria, for example siderophores. However, our previous discovery of a clinical isolate carrying a large chromosomal deletion missing the entire malleobactin gene cluster encoding the bacteriums major high-affinity siderophore while still being fully virulent in a murine melioidosis model suggested that other iron-acquisition systems might make contributions to virulence. Here, we deleted the major siderophore malleobactin (mba) and pyochelin (pch) gene clusters in strain 1710b and revealed a residual siderophore activity which was unrelated to other known Burkholderia siderophores such as cepabactin and cepaciachelin, and not due to increased secretion of chelators such as citrate. Deletion of the two hemin uptake loci, hmu and hem, showed that Hmu is required for utilization of hemin and hemoglobin and that Hem cannot complement a Hmu deficiency. Prolonged incubation of a hmu hem mutant in hemoglobin-containing minimal medium yielded variants able to utilize hemoglobin and hemin suggesting alternate pathways for utilization of these two host iron sources. Lactoferrin utilization was dependent on malleobactin, but not pyochelin synthesis and/or uptake. A mba pch hmu hem quadruple mutant could use ferritin as an iron source and upon intranasal infection was lethal in an acute murine melioidosis model. These data suggest that B. pseudomallei may employ a novel ferritin-iron acquisition pathway as a means to sustain in vivo growth.


PLOS ONE | 2012

Persistent Gastric Colonization with Burkholderia pseudomallei and Dissemination from the Gastrointestinal Tract following Mucosal Inoculation of Mice

Andrew Goodyear; Helle Bielefeldt-Ohmann; Herbert P. Schweizer; Steven W. Dow

Melioidosis is a disease of humans caused by opportunistic infection with the soil and water bacterium Burkholderia pseudomallei. Melioidosis can manifest as an acute, overwhelming infection or as a chronic, recurrent infection. At present, it is not clear where B. pseudomallei resides in the mammalian host during the chronic, recurrent phase of infection. To address this question, we developed a mouse low-dose mucosal challenge model of chronic B. pseudomallei infection and investigated sites of bacterial persistence over 60 days. Sensitive culture techniques and selective media were used to quantitate bacterial burden in major organs, including the gastrointestinal (GI) tract. We found that the GI tract was the primary site of bacterial persistence during the chronic infection phase, and was the only site from which the organism could be consistently cultured during a 60-day infection period. The organism could be repeatedly recovered from all levels of the GI tract, and chronic infection was accompanied by sustained low-level fecal shedding. The stomach was identified as the primary site of GI colonization as determined by fluorescent in situ hybridization. Organisms in the stomach were associated with the gastric mucosal surface, and the propensity to colonize the gastric mucosa was observed with 4 different B. pseudomallei isolates. In contrast, B. pseudomallei organisms were present at low numbers within luminal contents in the small and large intestine and cecum relative to the stomach. Notably, inflammatory lesions were not detected in any GI tissue examined in chronically-infected mice. Only low-dose oral or intranasal inoculation led to GI colonization and development of chronic infection of the spleen and liver. Thus, we concluded that in a mouse model of melioidosis B. pseudomallei preferentially colonizes the stomach following oral inoculation, and that the chronically colonized GI tract likely serves as a reservoir for dissemination of infection to extra-intestinal sites.


Journal of Immunology | 2010

Critical Protective Role for MCP-1 in Pneumonic Burkholderia mallei Infection

Andrew Goodyear; Abby Jones; Ryan M. Troyer; Helle Bielefeldt-Ohmann; Steven W. Dow

Burkholderia mallei is a Gram-negative bacterial pathogen of domestic equidae and humans that can cause severe, rapidly life-threatening pneumonic infections. Little is known regarding the role of chemokines and early cellular immune responses in protective immunity to pulmonary infection with B. mallei. Although the role of MCP-1 in Gram-positive bacterial infections has been previously investigated, the role of MCP-1 in immunity to acute pneumonia caused by Gram-negative bacteria, such as B. mallei, has not been assessed. In a mouse model of pneumonic B. mallei infection, we found that both MCP-1−/− mice and CCR2−/− mice were extremely susceptible to pulmonary infection with B. mallei, compared with wild-type (WT) C57Bl/6 mice. Bacterial burden and organ lesions were significantly increased in CCR2−/− mice, compared with WT animals, following B. mallei challenge. Monocyte and dendritic cell recruitment into the lungs of CCR2−/− mice was significantly reduced in comparison with that in WT mice following B. mallei infection, whereas neutrophil recruitment was actually increased. Depletion of monocytes and macrophages prior to infection also greatly raised the susceptibility of WT mice to infection. Production of IL-12 and IFN-γ in the lungs after B. mallei infection was significantly impaired in both MCP-1−/− and CCR2−/− mice, whereas treatment of CCR2−/− mice with rIFN-γ restored protection against lethal challenge with B. mallei. Thus, we conclude that MCP-1 plays a key role in regulating cellular immunity and IFN-γ production following pneumonic infection with B. mallei and therefore may also figure importantly in other Gram-negative pneumonias.


BMC Microbiology | 2012

Dietary rice bran promotes resistance to Salmonella enterica serovar Typhimurium colonization in mice

Ajay Kumar; Angela J. Henderson; Genevieve M. Forster; Andrew Goodyear; Tiffany L. Weir; Jan E. Leach; Steven W. Dow; Elizabeth P. Ryan

BackgroundDietary rice bran consists of many bioactive components with disease fighting properties; including the capacity to modulate the gut microbiota. Studies point to the important roles of the gut microbiota and the mucosal epithelium in the establishment of protection against enteric pathogens, such as Salmonella. The ability of rice bran to reduce the susceptibility of mice to a Salmonella infection has not been previously investigated. Therefore, we hypothesized that the incorporation of rice bran into the diet would inhibit the colonization of Salmonella in mice through the induction of protective mucosal responses.ResultsMice were fed diets containing 0%, 10% and 20% rice bran for one week prior to being orally infected with Salmonella enterica serovar Typhimurium. We found that mice consuming the 10 and 20% rice bran diets exhibited a reduction in Salmonella fecal shedding for up to nine days post-infection as compared to control diet fed animals (p < 0.05). In addition, we observed decreased concentrations of the pro-inflammatory cytokines, TNF-alpha, IFN-gamma, and IL-12 (p < 0.05) as well as increased colonization of native Lactobacillus spp. in rice bran fed mice (p < 0.05). Furthermore, in vitro experiments revealed the ability of rice bran extracts to reduce Salmonella entry into mouse small intestinal epithelial cells.ConclusionsIncreasing rice bran consumption represents a novel dietary means for reducing susceptibility to enteric infection with Salmonella and potentially via induction of native Lactobacillus spp.


Infection and Immunity | 2013

Correlates of Immune Protection following Cutaneous Immunization with an Attenuated Burkholderia pseudomallei Vaccine

Ediane Silva; Andrew Goodyear; Marjorie D. Sutherland; Nicole L. Podnecky; Mercedes Gonzalez-Juarrero; Herbert P. Schweizer; Steven W. Dow

ABSTRACT Infections with the Gram-negative bacterium Burkholderia pseudomallei (melioidosis) are associated with high mortality, and there is currently no approved vaccine to prevent the development of melioidosis in humans. Infected patients also do not develop protective immunity to reinfection, and some individuals will develop chronic, subclinical infections with B. pseudomallei. At present, our understanding of what constitutes effective protective immunity against B. pseudomallei infection remains incomplete. Therefore, we conducted a study to elucidate immune correlates of vaccine-induced protective immunity against acute B. pseudomallei infection. BALB/c and C57BL/6 mice were immunized subcutaneously with a highly attenuated, Select Agent-excluded purM deletion mutant of B. pseudomallei (strain Bp82) and then subjected to intranasal challenge with virulent B. pseudomallei strain 1026b. Immunization with Bp82 generated significant protection from challenge with B. pseudomallei, and protection was associated with a significant reduction in bacterial burden in lungs, liver, and spleen of immunized mice. Humoral immunity was critically important for vaccine-induced protection, as mice lacking B cells were not protected by immunization and serum from Bp82-vaccinated mice could transfer partial protection to nonvaccinated animals. In contrast, vaccine-induced protective immunity was found to be independent of both CD4 and CD8 T cells. Tracking studies demonstrated uptake of the Bp82 vaccine strain predominately by neutrophils in vaccine-draining lymph nodes and by smaller numbers of dendritic cells (DC) and monocytes. We concluded that protection following cutaneous immunization with a live attenuated Burkholderia vaccine strain was dependent primarily on generation of effective humoral immune responses.


Vaccine | 2010

Protection against pneumonic plague following oral immunization with a non-replicating vaccine

Abby Jones; Catharine M. Bosio; Angela Duffy; Andrew Goodyear; Martin E. Schriefer; Steven W. Dow

Yersinia pestis is a dangerous bacterial pathogen that when inhaled can rapidly induce fatal pneumonic plague. Thus, there is a need for stable, safe, and easily administered mucosal vaccines capable of eliciting effective protection against pulmonary Y. pestis infections. Cationic liposome-nucleic acid complexes (CLDC) have been shown previously to be effective vaccine adjuvants for parenteral immunization, but have not been previously evaluated for use in oral immunization. Therefore, we investigated the ability of an orally administered CLDC adjuvanted vaccine to elicit protective immunity against lethal pneumonic plague. C57Bl/6 mice were vaccinated orally or subcutaneously using 10mug Y. pestis F1 antigen combined with CLDC and immune responses and protection from challenge was assessed. We found that oral immunization elicited high titers of anti-F1 antibodies, equivalent to those generated by parenteral immunization. Importantly, orally immunized mice were protected from lethal pulmonary challenge with virulent Y. pestis for up to 18 weeks following vaccination. Vaccine-induced protection following oral immunization was found to be dependent primarily on CD4+ T cells, with a partial contribution from CD8+ T cells. Thus, CLDC adjuvanted vaccines represent a new type of orally administered, non-replicating vaccine capable of generating effective protection against pulmonary infection with virulent Y. pestis.

Collaboration


Dive into the Andrew Goodyear's collaboration.

Top Co-Authors

Avatar

Steven W. Dow

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan M. Troyer

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ajay Kumar

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abby Jones

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan E. Leach

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Katie L. Propst

Colorado State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge