Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew H. Crosby is active.

Publication


Featured researches published by Andrew H. Crosby.


Nature Genetics | 2001

Mutations in PTPN11 , encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome

Marco Tartaglia; Ernest L. Mehler; Rosalie Goldberg; Giuseppe Zampino; Han G. Brunner; Hannie Kremer; Ineke van der Burgt; Andrew H. Crosby; Andra Ion; Steve Jeffery; Kamini Kalidas; Michael A. Patton; Raju Kucherlapati; Bruce D. Gelb

Noonan syndrome (MIM 163950) is an autosomal dominant disorder characterized by dysmorphic facial features, proportionate short stature and heart disease (most commonly pulmonic stenosis and hypertrophic cardiomyopathy). Webbed neck, chest deformity, cryptorchidism, mental retardation and bleeding diatheses also are frequently associated with this disease. This syndrome is relatively common, with an estimated incidence of 1 in 1,000–2,500 live births. It has been mapped to a 5-cM region (N-SH2) on chromosome 12q24.1, and genetic heterogeneity has also been documented. Here we show that missense mutations in PTPN11 (MIM 176876)—a gene encoding the nonreceptor protein tyrosine phosphatase SHP-2, which contains two Src homology 2 (SH2) domains—cause Noonan syndrome and account for more than 50% of the cases that we examined. All PTPN11 missense mutations cluster in interacting portions of the amino N-SH2 domain and the phosphotyrosine phosphatase domains, which are involved in switching the protein between its inactive and active conformations. An energetics-based structural analysis of two N-SH2 mutants indicates that in these mutants there may be a significant shift of the equilibrium favoring the active conformation. This implies that they are gain-of-function changes and that the pathogenesis of Noonan syndrome arises from excessive SHP-2 activity.


The Lancet | 2000

Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease)

Godfrina McKoy; Nikos Protonotarios; Andrew H. Crosby; Adalena Tsatsopoulou; Aris Anastasakis; Aman S. Coonar; Mark Norman; Christina Baboonian; Steve Jeffery; William J. McKenna

BACKGROUND Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an autosomal dominant heart muscle disorder that causes arrhythmia, heart failure, and sudden death. Previously we mapped the genetic locus for the triad of autosomal recessive ARVC, palmoplantar keratoderma, and woolly hair (Naxos disease) to chromosome 17q21, in which the gene for plakoglobin is encoded. This protein is a key component of desmosomes and adherens junctions, and is important for the tight adhesion of many cell types, including those in the heart and skin. METHODS We studied 19 individuals with Naxos disease, as well as unaffected family members and unrelated individuals from the neighbouring Greek islands of Naxos and Milos. Gene sequence was determined by reverse transcriptase PCR from RNA isolated from the skin of an affected individual and mutations in other cases were confirmed by restriction-enzyme analysis. FINDINGS A homozygous 2 base pair deletion in the plakoglobin gene was identified only in the 19 affected individuals. This deletion caused a frameshift and premature termination of the protein, which was shown by western blot analysis. 29 clinically unaffected family members were heterozygous for the mutation; 20 unrelated individuals from Naxos and 43 autosomal dominant ARVC probands were homozygous for the normal allele. INTERPRETATION The finding of a deletion in plakoglobin in ARVC suggests that the proteins involved in cell-cell adhesion play an important part in maintaining myocyte integrity, and when junctions are disrupted, cell death, and fibrofatty replacement occur. Therefore, the discovery of a mutation in a protein with functions in maintaining cell junction integrity has important implications for other dominant forms of ARVC, related cardiomyopathies, and other cutaneous diseases.


American Journal of Human Genetics | 2002

PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity

Marco Tartaglia; Kamini Kalidas; Adam Shaw; Xiaoling Song; Dan L. Musat; Ineke van der Burgt; Han G. Brunner; Débora Romeo Bertola; Andrew H. Crosby; Andra Ion; Raju Kucherlapati; Steve Jeffery; Michael A. Patton; Bruce D. Gelb

Noonan syndrome (NS) is a developmental disorder characterized by facial dysmorphia, short stature, cardiac defects, and skeletal malformations. We recently demonstrated that mutations in PTPN11, the gene encoding the non-receptor-type protein tyrosine phosphatase SHP-2 (src homology region 2-domain phosphatase-2), cause NS, accounting for approximately 50% of cases of this genetically heterogeneous disorder in a small cohort. All mutations were missense changes and clustered at the interacting portions of the amino-terminal src-homology 2 (N-SH2) and protein tyrosine phosphatase (PTP) domains. A gain of function was postulated as a mechanism for the disease. Here, we report the spectrum and distribution of PTPN11 mutations in a large, well-characterized cohort with NS. Mutations were found in 54 of 119 (45%) unrelated individuals with sporadic or familial NS. There was a significantly higher prevalence of mutations among familial cases than among sporadic ones. All defects were missense, and several were recurrent. The vast majority of mutations altered amino acid residues located in or around the interacting surfaces of the N-SH2 and PTP domains, but defects also affected residues in the C-SH2 domain, as well as in the peptide linking the N-SH2 and C-SH2 domains. Genotype-phenotype analysis revealed that pulmonic stenosis was more prevalent among the group of subjects with NS who had PTPN11 mutations than it was in the group without them (70.6% vs. 46.2%; P<.01), whereas hypertrophic cardiomyopathy was less prevalent among those with PTPN11 mutations (5.9% vs. 26.2%; P<.005). The prevalence of other congenital heart malformations, short stature, pectus deformity, cryptorchidism, and developmental delay did not differ between the two groups. A PTPN11 mutation was identified in a family inheriting Noonan-like/multiple giant-cell lesion syndrome, extending the phenotypic range of disease associated with this gene.


Lancet Neurology | 2008

Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms.

Sara Salinas; Christos Proukakis; Andrew H. Crosby; Thomas T. Warner

Hereditary spastic paraplegia (HSP) describes a heterogeneous group of genetic neurodegenerative disorders in which the most severely affected neurons are those of the spinal cord. These disorders are characterised clinically by progressive spasticity and weakness of the lower limbs, and pathologically by retrograde axonal degeneration of the corticospinal tracts and posterior columns. In recent years, genetic studies have identified key cellular functions that are vital for the maintenance of axonal homoeostasis in HSP. Here, we describe the clinical and diagnostic features of the various forms of HSP. We also discuss the genes that have been identified and the emerging pathogenic mechanisms.


Nature Genetics | 2004

Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome

Christian Windpassinger; Michaela Auer-Grumbach; Joy Irobi; Heema Patel; E. Petek; Gerd Hörl; Roland Malli; Johanna A. Reed; Ines Dierick; Nathalie Verpoorten; Thomas T. Warner; Christos Proukakis; P. Van den Bergh; C. Verellen; L. Van Maldergem; Luciano Merlini; P. De Jonghe; Vincent Timmerman; Andrew H. Crosby; K. Wagner

Distal hereditary motor neuropathy (dHMN) or distal spinal muscular atrophy (OMIM #182960) is a heterogeneous group of disorders characterized by an almost exclusive degeneration of motor nerve fibers, predominantly in the distal part of the limbs. Silver syndrome (OMIM #270685) is a rare form of hereditary spastic paraparesis mapped to chromosome 11q12–q14 (SPG17) in which spasticity of the legs is accompanied by amyotrophy of the hands and occasionally also the lower limbs. Silver syndrome and most forms of dHMN are autosomal dominantly inherited with incomplete penetrance and a broad variability in clinical expression. A genome-wide scan in an Austrian family with dHMN-V (ref. 4) showed linkage to the locus SPG17, which was confirmed in 16 additional families with a phenotype characteristic of dHMN or Silver syndrome. After refining the critical region to 1 Mb, we sequenced the gene Berardinelli-Seip congenital lipodystrophy (BSCL2) and identified two heterozygous missense mutations resulting in the amino acid substitutions N88S and S90L. Null mutations in BSCL2, which encodes the protein seipin, were previously shown to be associated with autosomal recessive Berardinelli-Seip congenital lipodystrophy (OMIM #269700). We show that seipin is an integral membrane protein of the endoplasmic reticulum (ER). The amino acid substitutions N88S and S90L affect glycosylation of seipin and result in aggregate formation leading to neurodegeneration.


Nature Genetics | 2004

Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase

Michael A. Simpson; Harold E. Cross; Christos Proukakis; David A. Priestman; David C. A. Neville; Gabriele Reinkensmeier; Heng Wang; Max Wiznitzer; Kay Gurtz; Argyro Verganelaki; Anna Pryde; Michael A. Patton; Raymond A. Dwek; Terry D. Butters; Frances M. Platt; Andrew H. Crosby

We identified an autosomal recessive infantile-onset symptomatic epilepsy syndrome associated with developmental stagnation and blindness. Assuming a founder effect in a large Old Order Amish pedigree, we carried out a genome-wide screen for linkage and identified a single region of homozygosity on chromosome 2p12–p11.2 spanning 5.1 cM (maximum lod score of 6.84). We sequenced genes in the region and identified a nonsense mutation in SIAT9, which is predicted to result in the premature termination of the GM3 synthase enzyme (also called lactosylceramide α-2,3 sialyltransferase). GM3 synthase is a member of the sialyltransferase family and catalyzes the initial step in the biosynthesis of most complex gangliosides from lactosylceramide. Biochemical analysis of plasma glycosphingolipids confirmed that affected individuals lack GM3 synthase activity, as marked by a complete lack of GM3 ganglioside and its biosynthetic derivatives and an increase in lactosylceramide and its alternative derivatives. Although the relationship between defects in ganglioside catabolism and a range of lysosomal storage diseases is well documented, this is the first report, to our knowledge, of a disruption of ganglioside biosynthesis associated with human disease.


Circulation | 2005

Novel Mutation in Desmoplakin Causes Arrhythmogenic Left Ventricular Cardiomyopathy

Mark Norman; Michael A. Simpson; Jens Mogensen; Anthony Shaw; Sîan Hughes; Petros Syrris; Srijita Sen-Chowdhry; Edward Rowland; Andrew H. Crosby; William J. McKenna

Background—Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a familial heart muscle disease characterized by structural, electrical, and pathological abnormalities of the right ventricle (RV). Several disease loci have been identified. Mutations in desmoplakin have recently been isolated in both autosomal-dominant and autosomal-recessive forms of ARVC. Primary left ventricular (LV) variants of the disease are increasingly recognized. We report on a large family with autosomal-dominant left-sided ARVC. Methods and Results—The proband presented with sudden cardiac death and fibrofatty replacement of the LV myocardium. The family was evaluated. Diagnosis was based on modified diagnostic criteria for ARVC. Seven had inferior and/or lateral T-wave inversion on ECG, LV dilatation, and ventricular arrhythmia, predominantly extrasystoles of LV origin. Three had sustained ventricular tachycardia; 7 had late potentials on signal-averaged ECG. Cardiovascular magnetic resonance imaging in 4 patients revealed wall-motion abnormalities of the RV and patchy, late gadolinium enhancement in the LV, suggestive of fibrosis. Linkage confirmed cosegregation to the desmoplakin intragenic marker D6S2975. A heterozygous, single adenine insertion (2034insA) in the desmoplakin gene was identified in affected individuals only. A frameshift introducing a premature stop codon with truncation of the rod and carboxy terminus of desmoplakin was confirmed by Western blot analysis. Conclusions—We have described a new dominant mutation in desmoplakin that causes left-sided ARVC, with arrhythmias of LV origin, lateral T-wave inversion, and late gadolinium enhancement in the LV on magnetic resonance images. Truncation of the carboxy terminus of desmoplakin and consequent disruption of intermediate filament binding may account for the predominant LV phenotype.


Nature Genetics | 2010

Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C

Michaela Auer-Grumbach; Andrea Olschewski; Lea Papić; Hannie Kremer; Meriel McEntagart; Sabine Uhrig; Carina Fischer; Eleonore Fröhlich; Zoltán Bálint; Bi Tang; Heimo Strohmaier; Hanns Lochmüller; Beate Schlotter-Weigel; Jan Senderek; Angelika Krebs; Katherine J. Dick; Richard Petty; Cheryl Longman; Neil E. Anderson; George W. Padberg; Helenius J. Schelhaas; Conny M. A. van Ravenswaaij-Arts; Thomas R. Pieber; Andrew H. Crosby; Christian Guelly

Spinal muscular atrophies (SMA, also known as hereditary motor neuropathies) and hereditary motor and sensory neuropathies (HMSN) are clinically and genetically heterogeneous disorders of the peripheral nervous system. Here we report that mutations in the TRPV4 gene cause congenital distal SMA, scapuloperoneal SMA, HMSN 2C. We identified three missense substitutions (R269H, R315W and R316C) affecting the intracellular N-terminal ankyrin domain of the TRPV4 ion channel in five families. Expression of mutant TRPV4 constructs in cells from the HeLa line revealed diminished surface localization of mutant proteins. In addition, TRPV4-regulated Ca2+ influx was substantially reduced even after stimulation with 4αPDD, a TRPV4 channel-specific agonist, and with hypo-osmotic solution. In summary, we describe a new hereditary channelopathy caused by mutations in TRPV4 and present evidence that the resulting substitutions in the N-terminal ankyrin domain affect channel maturation, leading to reduced surface expression of functional TRPV4 channels.


Archives of Disease in Childhood | 2006

The natural history of Noonan syndrome: a long-term follow-up study

Adam Shaw; Kamini Kalidas; Andrew H. Crosby; Steve Jeffery; Michael A. Patton

Objective: To define better the adult phenotype and natural history of Noonan syndrome. Design: A prospective observational study of a large cohort. Results: Data are presented for 112 individuals with Noonan syndrome (mean age 25.3 (range 12–71) years), who were followed up for a mean of 12.02 years. Mutations in PTPN11 were identified in 35% of probands. Ten subjects died during the study interval; three of these deaths were secondary to heart failure associated with hypertrophic cardiomyopathy. Pulmonary stenosis affected 73 (65%) subjects; 42 (58%) required no intervention, nine underwent balloon pulmonary valvuloplasty (three requiring further intervention) and 22 surgical valvuloplasty (three requiring further intervention). Hypertrophic cardiomyopathy affected 21 (19%) patients, which had remitted in two cases, but one subject required cardiac transplant. No subjects died suddenly or had symptoms suggestive of arrhythmia. The mean final adult height was 167.4 cm in males and 152.7 cm in females. Feeding problems in infancy were identified as a predictor of future outcome. The mean age of speaking in two-word phrases was 26 months for those with no feeding difficulties, compared with 39 months for those with severe problems requiring nasogastric feeding. Attendance at a school for children with special needs for the same groups was 12.5% and 58%, respectively. A statement of special educational need had been issued in 44% overall; however, academic achievement was broadly similar to that of the general population. Implications: Although the morbidity for some patients with Noonan syndrome is low, early predictors of poorer outcome have been identified, which will help ascertain those most in need of intervention.


American Journal of Human Genetics | 2008

Sequence alterations within CYP7B1 implicate defective cholesterol homeostasis in motor-neuron degeneration

Maria Tsaousidou; Karim Ouahchi; Thomas T. Warner; Yi Yang; Michael A. Simpson; Nigel G. Laing; Philip A. Wilkinson; Ricardo E. Madrid; Heema Patel; F. Hentati; Michael A. Patton; Afif Hentati; Philippa J. Lamont; Teepu Siddique; Andrew H. Crosby

The hereditary spastic paraplegias (HSPs) are a genetically and clinically heterogeneous group of upper-motor-neuron degenerative diseases characterized by selective axonal loss in the corticospinal tracts and dorsal columns. Although numerous mechanisms involving defective subcellular transportation, mitochondrial malfunction, and increased oxidative stress have been proposed, the pathogenic basis underlying the neuronal loss is unknown. We have performed linkage analysis to refine the extent of the SPG5 disease locus and conducted sequence analysis of the genes located within this region. This identified sequence alterations in the cytochrome P450-7B1 (CYP7B1) associated with this pure form of HSP. In the liver, CYP7B1 offers an alternative pathway for cholesterol degradation and also provides the primary metabolic route for the modification of dehydroepiandrosterone neurosteroids in the brain. These findings provide the first direct evidence of a pivotal role of altered cholesterol metabolism in the pathogenesis of motor-neuron degenerative disease and identify a potential for therapeutic intervention in this form of HSP.

Collaboration


Dive into the Andrew H. Crosby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas T. Warner

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge