Andrew H.-J. Wang
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew H.-J. Wang.
Science | 1974
Sung-Hou Kim; F. L. Suddath; G. J. Quigley; Alexander McPherson; Joel L. Sussman; Andrew H.-J. Wang; Nadrian C. Seeman; Alexander Rich
The 3-angstrom electron density map of crystalline yeast phenylalanine transfer RNA has provided us with a complete three-dimensional model which defines the positions of all of the nucleotide residues in the moleclule. The overall features of the molecule are virtually the same as those seen at a resolution of 4 angstroms except that many additional details of tertiary structure are now visualized. Ten types of hydrogen bonding are identified which define the specificity of tertiary interactions. The molecule is also stabilized by considerable stacking of the planar purines and pyrimidines. This tertiary structure explains, in a simple and direct fashion, chemical modification studies of transfer RNA. Since most of the tertiary interactions involve nucleotides which are common to all transfer RNA s, it is likely that this three-dimensional structure provides a basic pattern of folding which may help to clarify the three-dimensional structure of all transfer RNAs.
Cell | 1984
Andrew H.-J. Wang; Toshio Hakoshima; Gijs A. van der Marel; Jacques H. van Boom; Alexander Rich
Two hexanucleoside pentaphosphates , 5-methyl and 5-bromo cytosine derivatives of d( CpGpTpApCpG ) have been synthesized, crystallized, and their three-dimensional structure solved. They both form left-handed Z-DNA and the methylated derivative has been refined to 1.2 A resolution. These are the first crystal Z-DNA structures that contain AT base pairs. The overall form of the molecule is very similar to that of the unmethylated or the fully methylated (dC-dG)3 hexamer although there are slight changes in base stacking. However, significant differences are found in the hydration of the helical groove. When GC base pairs are present, the helical groove is systematically filled with two water molecules per base pair hydrogen bonded to the bases. Both of these water molecules are not seen in the electron density map in the segments of the helix containing AT base pairs, probably because of solvent disorder. This could be one of the features that makes AT base pairs form Z-DNA less readily than GC base pairs.
Journal of Molecular Biology | 1984
Stephen R. Holbrook; Andrew H.-J. Wang; Alexander Rich; Sung-Hou Kim
The local mobility of DNA and RNA can be described well by a segmented rigid body model in which the phosphates, riboses and bases are treated as independent groups. We have developed a computer program for extracting information about the translational and rotational mobility of these groups from X-ray diffraction data of single crystals of DNA and RNA fragments. We plan to extend our studies from the B DNA helix studied here to A and Z form helices for which diffraction data are available. The mobilities described here may be important in allowing the flexibility necessary for interaction of nucleic acids with proteins, ligands or other nucleic acids, and are crucial to our understanding of the factors governing both structural stability and motion of nucleic acids on a larger scale.
Journal of Biomolecular Structure & Dynamics | 1987
T. E. Haran; Zippora Shakked; Andrew H.-J. Wang; Alexander Rich
The crystal structure of d(CCCCGGGG) has been determined at a resolution of 2.25 A. The oligomers crystallize as A-DNA duplexes occupying crystallographic two-fold axes. The backbone conformation is, in general, similar to that observed in previously reported crystal structures of A-DNA fragments, except for the central linkage, where it adopts an extended structure resulting from all trans conformation at the P-O5-C5-C4 bonds. This type of conformation facilitates interstrand stacking between the guanines at the C-G site. The local helix twist at this step is very small (25 degrees) compared to an overall average of 33.5 degrees. The unique structure of the C-G base-pair step, namely the extended backbone and the distinct stacking geometry, may be an important feature in the recognition mechanism between double-stranded DNA molecules and restriction endonucleases such as Msp I, which cuts the sequence CCGG very specifically with a rate unaffected by neighboring base pairs.
Journal of Biomolecular Structure & Dynamics | 1987
Pui S. Ho; Christin A. Frederick; Daniel Saal; Andrew H.-J. Wang; Alexander Rich
A crystal of d(CGCGCG) in the Z-DNA lattice was soaked with ruthenium(III) hexaammine and its structure refined at 1.2 A resolution. Three unique metal complexes were found absorbed to each hexamer duplex. In addition, two symmetry-related binding sites were located, yielding a total of five ruthenium complexes bound to each d(CGCGCG) duplex. One unique site and its symmetry related site are nearly identical to the binding site of cobalt(III) hexaammine on Z-DNA. At that position, the metal complex bridges the convex surfaces of two adjacent Z-DNA strands by hydrogen bonds to the N7 and O6 functional groups of the guanine bases. The remaining three ruthenium three ruthenium(III) hexaammine binding sites are not present in the cobalt(III) hexaammine Z-DNA structure. Of these, two are related by symmetry and span the gap between the convex outer surface of one Z-DNA strand and the helical groove crevice of a neighboring strand. The third ruthenium site has no symmetry mate and involves interactions with only the deep groove. In this interaction, the metal complex hydrogen bonds to both the phosphate backbone and to a set of primary shell water molecules that extend the hydrogen bonding potential of the deep groove crevice out to the surface of the molecule. Solution studies comparing the circular dichroism spectra of low salt poly(dG-dC).poly(dG-dC) samples in the presence of ruthenium(III) and cobalt(III) hexammine show that the ruthenium complex does stabilize Z-DNA in solution, but not as effectively as the cobalt analogue. This suggests that some of the interactions available for the larger ruthenium complex may not be important for stabilization of the left-handed DNA conformation.
Journal of Biomolecular Structure & Dynamics | 1986
Andrew H.-J. Wang; Giovanni Ughetto; G. J. Quigley; Alexander Rich
The crystal structure of a DNA octamer d(GCGTACGC) complexed to an antitumor antibiotic, triostin A, has been solved and refined to 2.2 A resolution by x-ray diffraction analysis. The antibiotic molecule acts as a true bis intercalator surrounding the d(CpG) sequence at either end of the unwound right-handed DNA double helix. As previously observed in the structure of triostin A-d(CGTACG) complex (A.H.-J. Wang, et. al., Science, 225, 1115-1121 (1984)), the alanine amino acid residues of the drug molecule form sequence-specific hydrogen bonds to guanines in the minor groove. The two central A.T base pairs are in Hoogsteen configuration with adenine in the syn conformation. In addition, the two terminal G.C base pairs flanking the quinoxaline rings are also held together by Hoogsteen base pairing. This is the first observation in an oligonucleotide of. Hoogsteen G.C base pairs where the cytosine is protonated. The principal functional components of a bis-intercalative compound are discussed.
Journal of Molecular Biology | 1979
Alexander McPherson; Frances A. Jurnak; Andrew H.-J. Wang; Ian J. Molineux; Alexander Rich
Abstract The structure of the gene 5 DNA unwinding protein from bacteriophage fd has been determined by X-ray diffraction analysis of single crystals to 2.3 A resolution using six isomorphous heavy-atom derivatives. The essentially globular monomer appears to consist of three secondary structural elements, a radically twisted three-stranded antiparallel β sheet and two distinct anti-parallel β loops, which are joined by short segments of extended polypeptide chain. The molecule contains no α-helix. A long groove, or arch, 30 A in length is formed by the underside of the twisted β sheet and one of the two β ribbons. We believe this groove to be the DNA binding region, and this is supported by the assignment of residues on its surface implicated in binding by solution studies. These residues include several aromatic amino acids which may intercalate or stack upon the bases of the DNA. Two monomers are maintained as a dimer by the very close interaction of symmetry related β ribbons about the molecular dyad. About six residues at the amino and carboxyl terminus are in extended conformation and both seem to exhibit some degree of disorder. The amimo-terminal methionine is the locus for binding the platinum heavy-atom derivatives and tyrosine 26 for attachment of the major iodine substituent.
human-robot interaction | 2007
Cynthia Breazeal; Andrew H.-J. Wang; Rosalind W. Picard
We present RoCo, the first robotic computer designed with the ability to move its monitor in subtly expressive ways that respond to and encourage its users own postural movement. We use RoCo in a novel user study to explore whether a computers “posture” can influence its users subsequent posture, and if the interaction of the users body state with their affective state during a task leads to improved task measures such as persistence in problem solving. We believe this is possible in light of new theories that link physical posture and its influence on affect and cognition. Initial results with 71 subjects support the hypothesis that RoCos posture not only manipulates the users posture, but also is associated with hypothesized posture-affect interactions. Specifically, we found effects on increased persistence on a subsequent cognitive task, and effects on perceived level of comfort.
Journal of Molecular Biology | 1990
Loren Dean Williams; Martin Egli; Giovanni Ughetto; Gijs A. van der Marel; Jacques H. van Boom; G. J. Quigley; Andrew H.-J. Wang; Alexander Rich; Christine A. Frederick
The anthracyclines form an important family of cancer chemotherapeutic agents with a strong dependence of clinical properties on minor differences in chemical structure. We describe the X-ray crystallographic solution of the three-dimensional structure of the anthracycline 11-deoxydaunomycin plus d(CGTsACG). In this complex, two drug molecules bind to each hexamer duplex. Both the drug and the DNA are covalently modified in this complex in contrast with the three previously reported DNA-anthracycline complexes. In the 11-deoxydaunomycin complex the 11 hydroxyl group is absent and a phosphate oxygen at the TpA step has been replaced by a sulfur atom leading to a phosphorothioate with absolute stereochemistry R. Surprisingly, removal of a hydroxyl group from the 11 position does not alter the relative orientation of the intercalated chromophore. However, it appears that the phosphorothioate modification influenced the crystallization and caused the 11-deoxydaunomycin-d(CGTsACG) complex to crystallize into a different lattice (space group P2) with different lattice contacts and packing forces than the non-phosphorothioated DNA-anthracycline complexes (space group P4(1)2(1)2). In the minor groove of the DNA, the unexpected position of the amino-sugar of 11-deoxydaunomycin supports the hypothesis that in solution the position of the amino sugar is dynamic.
Journal of Biomolecular Structure & Dynamics | 1986
Miquel Coll; Andrew H.-J. Wang; G.A. van der Marel; J. H. Van Boom; Alexander Rich
The Z-DNA structure has been shown to form in two crystals made from self-complementary DNA hexamers d(CGTDCG) and d(CDCGTG) which contain thymine/2-aminoadenine (TD) base pairs. The latter structure has been solved and refined to 1.3 A resolution and it shows only small conformational changes due to the introduction of the TD base pairs in comparison with the structure of d(CG)3. Spectroscopic studies with these compounds demonstrate that DNA molecules containing 2-aminoadenine residues form Z-DNA slightly more easily than do those containing adenine nucleotides, but not as readily as the parent sequence containing only guanine-cytosine base pairs.