Andrew H. Proppe
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew H. Proppe.
Nano Letters | 2016
Xinzheng Lan; Oleksandr Voznyy; F. Pelayo García de Arquer; Mengxia Liu; Jixian Xu; Andrew H. Proppe; Grant Walters; Fengjia Fan; Hairen Tan; Min Liu; Zhenyu Yang; Sjoerd Hoogland; Edward H. Sargent
Colloidal quantum dot (CQD) solar cells are solution-processed photovoltaics with broad spectral absorption tunability. Major advances in their efficiency have been made via improved CQD surface passivation and device architectures with enhanced charge carrier collection. Herein, we demonstrate a new strategy to improve further the passivation of CQDs starting from the solution phase. A cosolvent system is employed to tune the solvent polarity in order to achieve the solvation of methylammonium iodide (MAI) and the dispersion of hydrophobic PbS CQDs simultaneously in a homogeneous phase, otherwise not achieved in a single solvent. This process enables MAI to access the CQDs to confer improved passivation. This, in turn, allows for efficient charge extraction from a thicker photoactive layer device, leading to a certified solar cell power conversion efficiency of 10.6%, a new certified record in CQD photovoltaics.
Applied Physics Letters | 2016
Amirreza Kiani; Brandon R. Sutherland; Younghoon Kim; Olivier Ouellette; Larissa Levina; Grant Walters; Cao-Thang Dinh; Mengxia Liu; Oleksandr Voznyy; Xinzheng Lan; André J. Labelle; Alexander H. Ip; Andrew H. Proppe; Ghada H. Ahmed; Omar F. Mohammed; Sjoerd Hoogland; Edward H. Sargent
Semiconductors with bandgaps in the near- to mid-infrared can harvest solar light that is otherwise wasted by conventional single-junction solar cell architectures. In particular, colloidal quantum dots (CQDs) are promising materials since they are cost-effective, processed from solution, and have a bandgap that can be tuned into the infrared (IR) via the quantum size effect. These characteristics enable them to harvest the infrared portion of the solar spectrum to which silicon is transparent. To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ∼1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal iodide-capped CQDs, we deposited active layers greater than 200 nm in thickness having a mean roughness less than 1 nm. We integrated these films into infrared solar cells that are stable in air and exhibit power conversion efficiencies of 3.5% under illumination by t...
Advanced Materials | 2017
Bin Sun; Oleksandr Voznyy; Hairen Tan; Philipp Stadler; Mengxia Liu; Grant Walters; Andrew H. Proppe; Min Liu; James Z. Fan; Tao-Tao Zhuang; Jie Li; Mingyang Wei; Jixian Xu; Younghoon Kim; Sjoerd Hoogland; Edward H. Sargent
Application of pseudohalogens in colloidal quantum dot (CQD) solar-cell active layers increases the solar-cell performance by reducing the trap densities and implementing thick CQD films. Pseudohalogens are polyatomic analogs of halogens, whose chemistry allows them to substitute halogen atoms by strong chemical interactions with the CQD surfaces. The pseudohalide thiocyanate anion is used to achieve a hybrid surface passivation. A fourfold reduced trap state density than in a control is observed by using a suite of field-effect transistor studies. This translates directly into the thickest CQD active layer ever reported, enabled by enhanced transport lengths in this new class of materials, and leads to the highest external quantum efficiency, 80% at the excitonic peak, compared with previous reports of CQD solar cells.
Nature Communications | 2017
Zhenyu Yang; James Z. Fan; Andrew H. Proppe; F. Pelayo García de Arquer; David Rossouw; Oleksandr Voznyy; Xinzheng Lan; Min Liu; Grant Walters; Rafael Quintero-Bermudez; Bin Sun; Sjoerd Hoogland; Shana O. Kelley; Edward H. Sargent
Colloidal quantum dots are emerging solution-processed materials for large-scale and low-cost photovoltaics. The recent advent of quantum dot inks has overcome the prior need for solid-state exchanges that previously added cost, complexity, and morphological disruption to the quantum dot solid. Unfortunately, these inks remain limited by the photocarrier diffusion length. Here we devise a strategy based on n- and p-type ligands that judiciously shifts the quantum dot band alignment. It leads to ink-based materials that retain the independent surface functionalization of quantum dots, and it creates distinguishable donor and acceptor domains for bulk heterojunctions. Interdot carrier transfer and exciton dissociation studies confirm efficient charge separation at the nanoscale interfaces between the two classes of quantum dots. We fabricate the first mixed-quantum-dot solar cells and achieve a power conversion of 10.4%, which surpasses the performance of previously reported bulk heterojunction quantum dot devices fully two-fold, indicating the potential of the mixed-quantum-dot approach.Solution processed colloidal quantum dots are emerging photovoltaic materials with tuneable infrared bandgaps. Here, Yang et al. create a class of quantum dot bulk heterojunction solar cell via ligand design, enabling longer photocarrier diffusion lengths for greater photocurrent and performance.
Journal of Physical Chemistry Letters | 2017
Madeline H. Elkins; Ryan D. Pensack; Andrew H. Proppe; Oleksandr Voznyy; Li Na Quan; Shana O. Kelley; Edward H. Sargent; Gregory D. Scholes
Quasi-two-dimensional lead halide perovskites, MAn-1PbnX3n+1, are quantum confined materials with an ever-developing range of optoelectronic device applications. Like other semiconductors, the correlated motion of electrons and holes dominates the materials response to optical excitation influencing its electrical and optical properties such as charge formation and mobility. However, the effects of many-particle correlation have been relatively unexplored in perovskite because of the difficultly of probing these states directly. Here, we use double quantum coherence spectroscopy to explore the formation and localization of multiexciton states in these materials. Between the most confined domains, we demonstrate the presence of an interwell, two-exciton excited state. This demonstrates that the four-body Coulomb interaction electronically couples neighboring wells despite weak electron/hole hybridization in these materials. Additionally, in contrast with inorganic semiconductor quantum wells, we demonstrate a rapid decrease in the dephasing time as wells become thicker, indicating that exciton delocalization is not limited by structural inhomogeneity in low-dimensional perovskite.
Nature Nanotechnology | 2018
Jixian Xu; Oleksandr Voznyy; Mengxia Liu; Ahmad R. Kirmani; Grant Walters; Rahim Munir; Maged Abdelsamie; Andrew H. Proppe; Amrita Sarkar; F. Pelayo García de Arquer; Mingyang Wei; Bin Sun; Min Liu; Olivier Ouellette; Rafael Quintero-Bermudez; Jie Li; James Z. Fan; Li Na Quan; Petar Todorović; Hairen Tan; Sjoerd Hoogland; Shana O. Kelley; Morgan Stefik; Aram Amassian; Edward H. Sargent
Colloidal quantum dots (CQDs) are promising photovoltaic (PV) materials because of their widely tunable absorption spectrum controlled by nanocrystal size1,2. Their bandgap tunability allows not only the optimization of single-junction cells, but also the fabrication of multijunction cells that complement perovskites and silicon3. Advances in surface passivation2,4–7, combined with advances in device structures8, have contributed to certified power conversion efficiencies (PCEs) that rose to 11% in 20169. Further gains in performance are available if the thickness of the devices can be increased to maximize the light harvesting at a high fill factor (FF). However, at present the active layer thickness is limited to ~300 nm by the concomitant photocarrier diffusion length. To date, CQD devices thicker than this typically exhibit decreases in short-circuit current (JSC) and open-circuit voltage (VOC), as seen in previous reports3,9–11. Here, we report a matrix engineering strategy for CQD solids that significantly enhances the photocarrier diffusion length. We find that a hybrid inorganic–amine coordinating complex enables us to generate a high-quality two-dimensionally (2D) confined inorganic matrix that programmes internanoparticle spacing at the atomic scale. This strategy enables the reduction of structural and energetic disorder in the solid and concurrent improvements in the CQD packing density and uniformity. Consequently, planar devices with a nearly doubled active layer thicknesses (~600 nm) and record values of JSC (32 mA cm−2) are fabricated. The VOC improved as the current was increased. We demonstrate CQD solar cells with a certified record efficiency of 12%.A new matrix engineering strategy enables improvements of CQD solar cell efficiency via considerable enhancement of the photocarrier diffusion length.
Advanced Materials | 2017
Jea Woong Jo; Younghoon Kim; Jongmin Choi; F. Pelayo García de Arquer; Grant Walters; Bin Sun; Olivier Ouellette; Junghwan Kim; Andrew H. Proppe; Rafael Quintero-Bermudez; James Z. Fan; Jixian Xu; Chih Shan Tan; Oleksandr Voznyy; Edward H. Sargent
The energy disorder that arises from colloidal quantum dot (CQD) polydispersity limits the open-circuit voltage (VOC ) and efficiency of CQD photovoltaics. This energy broadening is significantly deteriorated today during CQD ligand exchange and film assembly. Here, a new solution-phase ligand exchange that, via judicious incorporation of reactivity-engineered additives, provides improved monodispersity in final CQD films is reported. It has been found that increasing the concentration of the less reactive species prevents CQD fusion and etching. As a result, CQD solar cells with a VOC of 0.7 V (vs 0.61 V for the control) for CQD films with exciton peak at 1.28 eV and a power conversion efficiency of 10.9% (vs 10.1% for the control) is achieved.
Nano Letters | 2017
Oleksandr Voznyy; Larissa Levina; Fengjia Fan; Grant Walters; James Z. Fan; Amirreza Kiani; Alexander H. Ip; Susanna M. Thon; Andrew H. Proppe; Mengxia Liu; Edward H. Sargent
Stokes shift, an energy difference between the excitonic absorption and emission, is a property of colloidal quantum dots (CQDs) typically ascribed to splitting between dark and bright excitons. In some materials, e.g., PbS, CuInS2, and CdHgTe, a Stokes shift of up to 200 meV is observed, substantially larger than the estimates of dark-bright state splitting or vibronic relaxations. The shift origin remains highly debated because contradictory signatures of both surface and bulk character were reported for the Stokes-shifted electronic state. Here, we show that the energy transfer among CQDs in a polydispersed ensemble in solution suffices to explain the excess Stokes shift. This energy transfer is primarily due to CQD aggregation and can be substantially eliminated by extreme dilution, higher-viscosity solvent, or better-dispersed colloids. Our findings highlight that ensemble polydispersity remains the primary source of the Stokes shift in CQDs in solution, propagating into the Stokes shift in films and the open-circuit voltage deficit in CQD solar cells. Improved synthetic control can bring notable advancements in CQD photovoltaics, and the Stokes shift continues to provide a sensitive and significant metric to monitor ensemble size distribution.
Nature Materials | 2018
Rafael Quintero-Bermudez; Aryeh Gold-Parker; Andrew H. Proppe; Rahim Munir; Zhenyu Yang; Shana O. Kelley; Aram Amassian; Michael F. Toney; Edward H. Sargent
Reduced-dimensional metal halide perovskites (RDPs) have attracted significant attention in recent years due to their promising light harvesting and emissive properties. We sought to increase the systematic understanding of how RDPs are formed. Here we report that layered intermediate complexes formed with the solvent provide a scaffold that facilitates the nucleation and growth of RDPs during annealing, as observed via in situ X-ray scattering. Transient absorption spectroscopy of RDP single crystals and films enables the identification of the distribution of quantum well thicknesses. These insights allow us to develop a kinetic model of RDP formation that accounts for the experimentally observed size distribution of wells. RDPs exhibit a thickness distribution (with sizes that extend above n = 5) determined largely by the stoichiometric proportion between the intercalating cation and solvent complexes. The results indicate a means to control the distribution, composition and orientation of RDPs via the selection of the intercalating cation, the solvent and the deposition technique.A systematic analysis is performed to reveal how deposition conditions and the use of cations and solvents affect the composition and orientation of 2D and quasi-2D metal halide perovskites in thin films.
Nature Communications | 2018
Bin Sun; Olivier Ouellette; F. Pelayo García de Arquer; Oleksandr Voznyy; Younghoon Kim; Mingyang Wei; Andrew H. Proppe; Makhsud I. Saidaminov; Jixian Xu; Mengxia Liu; Peicheng Li; James Z. Fan; Jea Woong Jo; Hairen Tan; Furui Tan; Sjoerd Hoogland; Zheng-Hong Lu; Shana O. Kelley; Edward H. Sargent
As crystalline silicon solar cells approach in efficiency their theoretical limit, strategies are being developed to achieve efficient infrared energy harvesting to augment silicon using solar photons from beyond its 1100 nm absorption edge. Herein we report a strategy that uses multi-bandgap lead sulfide colloidal quantum dot (CQD) ensembles to maximize short-circuit current and open-circuit voltage simultaneously. We engineer the density of states to achieve simultaneously a large quasi-Fermi level splitting and a tailored optical response that matches the infrared solar spectrum. We shape the density of states by selectively introducing larger-bandgap CQDs within a smaller-bandgap CQD population, achieving a 40 meV increase in open-circuit voltage. The near-unity internal quantum efficiency in the optimized multi-bandgap CQD ensemble yielded a maximized photocurrent of 3.7 ± 0.2 mA cm−2. This provides a record for silicon-filtered power conversion efficiency equal to one power point, a 25% (relative) improvement compared to the best previously-reported results.Efficient harvest of solar energy beyond the silicon absorption edge of 1100 nm by semiconductor solar cells remains a challenge. Here Sun et al. mix high multi-bandgap lead sulfide colloidal quantum dot ensembles to further increase both short circuit current and open circuit voltage.