Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew H. Sinclair is active.

Publication


Featured researches published by Andrew H. Sinclair.


Nature | 1990

Genetic evidence equating SRY and the testis-determining factor

Philippe Berta; J. Boss Hawkins; Andrew H. Sinclair; Anne Taylor; Beatrice Griffiths; Peter N. Goodfellow; Marc Fellous

THE testis-determining factor gene (TDF) lies on the Y chromosome and is responsible for initiating male sex determination. SRY is a gene located in the sex-determining region of the human and mouse Y chromosomes and has many of the properties expected for TDFl–3 Sex reversal in XY females results from the failure of the testis determination or differentiation pathways. Some XY females, with gonadal dysgenesis, have lost the sex-determining region from the Y chromosome by terminal exchange between the sex chromosomes4 or by other deletions5. If SRY is TDF, it would be predicted that some sex-reversed XY females, without Y chromosome deletions, will have suffered mutations in SRY. We have tested human XY females and normal XY males for alterations in SRY using the single-strand conformation polymorphism assay6,7 and subsequent DNA sequencing. A de novo mutation was found in the SRY gene of one XY female: this mutation was not present in the patients normal father and brother. A second variant was found in the SRY gene of another XY female, but in this case the normal father shared the same alteration. The variant in the second case may be fortuitously associated with, or predisposing towards sex reversal; the de novo mutation associated with sex reversal provides compelling evidence that SRY is required for male sex determination.


Nature | 2009

The avian Z-linked gene DMRT1 is required for male sex determination in the chicken

Craig A. Smith; Kelly N. Roeszler; Thomas Ohnesorg; David M. Cummins; Peter G. Farlie; Timothy J. Doran; Andrew H. Sinclair

Sex in birds is chromosomally based, as in mammals, but the sex chromosomes are different and the mechanism of avian sex determination has been a long-standing mystery. In the chicken and all other birds, the homogametic sex is male (ZZ) and the heterogametic sex is female (ZW). Two hypotheses have been proposed for the mechanism of avian sex determination. The W (female) chromosome may carry a dominant-acting ovary determinant. Alternatively, the dosage of a Z-linked gene may mediate sex determination, two doses being required for male development (ZZ). A strong candidate avian sex-determinant under the dosage hypothesis is the conserved Z-linked gene, DMRT1 (doublesex and mab-3-related transcription factor 1). Here we used RNA interference (RNAi) to knock down DMRT1 in early chicken embryos. Reduction of DMRT1 protein expression in ovo leads to feminization of the embryonic gonads in genetically male (ZZ) embryos. Affected males show partial sex reversal, characterized by feminization of the gonads. The feminized left gonad shows female-like histology, disorganized testis cords and a decline in the testicular marker, SOX9. The ovarian marker, aromatase, is ectopically activated. The feminized right gonad shows a more variable loss of DMRT1 and ectopic aromatase activation, suggesting differential sensitivity to DMRT1 between left and right gonads. Germ cells also show a female pattern of distribution in the feminized male gonads. These results indicate that DMRT1 is required for testis determination in the chicken. Our data support the Z dosage hypothesis for avian sex determination.


Nature | 1999

Evolution: Conservation of a sex-determining gene

Craig A. Smith; Peter J. McClive; Patrick S. Western; Kirsty J. Reed; Andrew H. Sinclair

Vertebrates exhibit a surprising array of sex-determining mechanisms, including X- and Y-chromosome heterogametes in male mammals, Z- and W-chromosome hetero-gametes in female birds, and a temperature-dependent mechanism in many reptiles. The Y-chromosome-linked SRY gene initiates male development in mammals, but other vertebrates lack SRY and the genes controlling sex determination are largely unknown. Here we show that a gene implicated in human testis differentiation, DMRT1, has a gonad-specific and sexually dimorphic expression profile during embryogenesis in mammals, birds and a reptile (Alligator mississippiensis). Given the different sex-determining switches in these three groups, this gene must represent an ancient, conserved component of the ver-tebrate sex-determining pathway.


Stem Cells | 2008

Dynamic Regulation of Mitotic Arrest in Fetal Male Germ Cells

Patrick S. Western; Denise C. Miles; Jocelyn A. van den Bergen; Matt Burton; Andrew H. Sinclair

During fetal mouse development, germ cells enter the developing gonad at embryonic day (E) 10–11. In response to signaling from the male or female gonad, the germ cells commit either to spermatogenesis at E12.5 and enter mitotic arrest or to oogenesis and enter meiotic arrest at E13.5. It is unclear whether male commitment of the germ line and mitotic arrest are directly associated or whether they are developmentally separate. In addition, the published data describing the timing of mitotic arrest are inconsistent, and the molecular processes underlying the control of the cell cycle during mitotic arrest also remain unknown. Using flow cytometric techniques, 5‐bromo‐2′‐deoxyuridine labeling, and immunofluorescent analysis of cell proliferation, we have determined that germ cells in the embryonic mouse testis arrest in G0 during E12.5 and E14.5. This process is gradual and occurs in an unsynchronized manner. We have also purified germ cells and analyzed molecular changes in male germ cells as they exit the cell cycle. This has allowed us to identify a series of molecular events, including activation of p27Kip1, p15INK4b, and p16INK4a; the dephosphorylation and degradation of retinoblastoma protein; and the suppression of CyclinE, which lead to mitotic arrest. For the first time, the data presented here accurately define the mitotic arrest of male germ cells by directly combining the analysis of cell cycle changes with the examination of functionally defined cell cycle regulators.


Journal of Clinical Investigation | 2011

Identification of SOX3 as an XX male sex reversal gene in mice and humans

Edwina Sutton; James N. Hughes; Stefan J. White; Ryohei Sekido; Jacqueline Tan; Valerie A. Arboleda; Nicholas Rogers; Kevin C. Knower; Lynn Rowley; Helen J. Eyre; Karine Rizzoti; Dale McAninch; João Gonçalves; Jennie Slee; Erin Turbitt; Damien Bruno; Henrik Bengtsson; Vincent R. Harley; Eric Vilain; Andrew H. Sinclair; Robin Lovell-Badge; Paul Q. Thomas

Sex in mammals is genetically determined and is defined at the cellular level by sex chromosome complement (XY males and XX females). The Y chromosome-linked gene sex-determining region Y (SRY) is believed to be the master initiator of male sex determination in almost all eutherian and metatherian mammals, functioning to upregulate expression of its direct target gene Sry-related HMG box-containing gene 9 (SOX9). Data suggest that SRY evolved from SOX3, although there is no direct functional evidence to support this hypothesis. Indeed, loss-of-function mutations in SOX3 do not affect sex determination in mice or humans. To further investigate Sox3 function in vivo, we generated transgenic mice overexpressing Sox3. Here, we report that in one of these transgenic lines, Sox3 was ectopically expressed in the bipotential gonad and that this led to frequent complete XX male sex reversal. Further analysis indicated that Sox3 induced testis differentiation in this particular line of mice by upregulating expression of Sox9 via a similar mechanism to Sry. Importantly, we also identified genomic rearrangements within the SOX3 regulatory region in three patients with XX male sex reversal. Together, these data suggest that SOX3 and SRY are functionally interchangeable in sex determination and support the notion that SRY evolved from SOX3 via a regulatory mutation that led to its de novo expression in the early gonad.


The Journal of Steroid Biochemistry and Molecular Biology | 1997

Gonadal sex differentiation in chicken embryos: Expression of estrogen receptor and aromatase genes

Craig A. Smith; Jane E. Andrews; Andrew H. Sinclair

Estrogen is implicated in sexual differentiation of the avian gonad. Expression of the estrogen receptor and aromatase genes was therefore examined at the time of gonadal sex differentiation in chicken embryos, using reverse transcription and the polymerase chain reaction (RT-PCR). Estrogen receptor (cER) transcripts were detected in the gonads of both presumptive sexes at embryonic days 4.5, 5.5 and 6.5, and in female but not male urogenital tissues at day 3.5. Aromatase (cAROM) transcripts were detected in female but not male gonads from day 6.5 of embryogenesis, and in adult gonads of both sexes. Both female and male embryos thus express cER mRNA before morphological differentiation of the gonads, which begins on day 5, whereas cAROM expression begins at or shortly after the onset of differentiation and is female-specific. Examination of other tissues showed that, in 5.5-day-old embryos, cER expression was limited to the gonads; no transcripts were detected in the mesonephric kidney, liver, brain, hindlimb or heart of either sex. In 9.5-day-old female embryos, cER and cAROM transcripts were present in both the left (ovarian) and the right (regressing) gonads. Altogether, these observations imply that the gonads of both sexes develop the capacity to respond to estrogens early in embryogenesis, before morphological differentiation, whereas the capacity to synthesize estrogens is female-specific and occurs later, at the time of differentiation. These observations are consistent with estrogens having a key role in ovarian development.


Biology of Reproduction | 2003

DMRT1 Is Upregulated in the Gonads During Female-to-Male Sex Reversal in ZW Chicken Embryos

Craig A. Smith; Melissa Katz; Andrew H. Sinclair

Abstract Sex in birds is chomosomally based (ZZ male, ZW female), but the mechanism underlying sex determination remains unknown. An unresolved question is whether Z gene dosage plays a role in avian sex determination. DMRT1 is an avian Z-linked gene that shows higher expression in male gonads during embryogenesis and has been proposed as a putative testis-determining gene in birds. The Z-linkage of this gene makes it an ideal candidate for testing the question of gene dosage in avian testis determination. A higher level of DMRT1 expression in male (ZZ) versus female (ZW) embryonic gonads may reflect the presence of two Z-linked copies in the male, or it may be due to specific and active upregulation of DMRT1 during testis formation. A functional interventionist strategy was used to distinguish between these two possibilities. DMRT1 expression was analyzed in chicken embryos during experimentally induced female-to-male sex reversal, using the aromatase enzyme inhibitor fadrozole. DMRT1 expression was analyzed by whole mount in situ hybridization and reverse transcription polymerase chain reaction (for mRNA) and indirect immunofluorescence (for protein). Female-to-male sex-reversed embryos (genetically ZW) showed elevated levels of DMRT1 expression similar to those of normal males (with two copies of the Z chromosome). Elevated levels of DMRT1 are therefore associated with testis development, both in normal males (ZZ) and in sex-reversed females (ZW). SOX9 expression was also activated during female-to-male sex reversal but appeared delayed relative to DMRT1 upregulation. These results show that testis development does not require two Z-linked copies of DMRT1, but it does involve active upregulation of the gene. Higher levels of DMRT1 expression during testis differentiation therefore do not simply reflect a gene dosage difference between the two sexes but imply active involvement in male development.


Developmental Biology | 2009

Endothelial cell migration directs testis cord formation

Alexander N. Combes; Dagmar Wilhelm; Tara Davidson; Elisabetta Dejana; Vincent R. Harley; Andrew H. Sinclair; Peter Koopman

While the molecular cues initiating testis determination have been identified in mammals, the cellular interactions involved in generating a functional testis with cord and interstitial compartments remain poorly understood. Previous studies have shown that testis cord formation relies on cell migration from the adjacent mesonephros, and have implicated immigrant peritubular myoid cells in this process. Here, we used recombinant organ culture experiments to show that immigrant cells are endothelial, not peritubular myoid or other interstitial cells. Inhibition of endothelial cell migration and vascular organisation using a blocking antibody to VE-cadherin, also disrupted the development of testis cords. Our data reveal that migration of endothelial cells is required for testis cord formation, consistent with increasing evidence of a broader role for endothelial cells in establishing tissue architecture during organogenesis.


Developmental Dynamics | 1999

Temperature-dependent sex determination: Upregulation of SOX9 expression after commitment to male development

Patrick S. Western; Jenny L. Harry; Jennifer A. Marshall Graves; Andrew H. Sinclair

In mammals, birds and reptiles the morphological development of the gonads appear to be conserved. This conservation is evident despite the different sex determining switches employed by these vertebrate groups. Mammals exhibit chromosomal sex determination (CSD) where the key sex determining switch is the Y‐linked gene, SRY. Although SRYis the trigger for testis determination in mammals, it is not conserved in other vertebrate groups. However, a gene closely related to SRY, the highly conserved transcription factor, SOX9, plays an important role in the testis pathway of mammals and birds. In contrast to the CSD mechanism evident in mammals and birds, many reptiles exhibit temperature dependent sex determination (TSD) where the egg incubation temperature triggers sex determination. Here we examine the expression of SOX9 during gonadogenesis in the American alligator, (Alligator mississippiensis), a reptile that exhibits TSD. Alligator SOX9 is expressed in the embryonic testis but not in the ovary. However, the timing of SOX9 upregulation in the developing testis is not consistent with a role for this gene in the early stages of alligator sex determination. Since SOX9 upregulation in male embryos coincides with the structural organisation of the testis, SOX9 may operate farther downstream in the vertebrate sex differentiation pathway than previously postulated. Dev Dyn 1999;214:171–177.


Gene | 1999

Gene expression during gonadogenesis in the chicken embryo

Craig A. Smith; Matthijs J. Smith; Andrew H. Sinclair

Genes implicated in vertebrate sex determination and differentiation were studied in embryonic chicken gonads using reverse transcription and the polymerase chain reaction (RT-PCR). Expression profiles were obtained during gonadal sex differentiation for AMH, SOX9, SOX3, the Wilms Tumour gene, WT1, and the orphan nuclear receptor genes, SF1 and DAX1. Some of these genes showed sexually dimorphic expression profiles during gonadal development, whereas others were expressed at similar levels in both sexes. The gene encoding Anti-Müllerian hormone (AMH) was expressed in both sexes prior to and during sexual differentiation of the gonads, with levels of expression consistently higher in males than in females. SOX9 expression was male-specific, and was up-regulated after the detection of AMH transcripts. SOX3 expression was observed prior to clear SOX9 expression and was up-regulated in both sexes at the onset of gonadal sex differentiation (but declined later in development). The WT1 gene was highly expressed in both sexes, whereas SF1 expression was clearly higher in developing ovaries compared to testes. DAX1 transcripts were observed in both sexes at all stages examined, but expression appeared somewhat higher in developing ovaries. These expression profiles are analysed in terms of current theories of vertebrate sex determination.

Collaboration


Dive into the Andrew H. Sinclair's collaboration.

Top Co-Authors

Avatar

Peter Koopman

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent R. Harley

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Patrick S. Western

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Ohnesorg

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan J. White

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefanie Eggers

Royal Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge