Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew I. Brooks is active.

Publication


Featured researches published by Andrew I. Brooks.


Brain Research | 1999

Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss.

Andrew I. Brooks; C.A Chadwick; Harris A. Gelbard; Deborah A. Cory-Slechta; Howard J. Federoff

The herbicide paraquat, bearing structural similarity to the known dopaminergic neurotoxicant MPTP, has been suggested as a potential etiologic factor in Parkinsons disease. Consideration of paraquat as a candidate neurotoxicant requires demonstration that systemic delivery produces substantia nigra dopaminergic neuron loss and the attendant neurobehavioral syndrome reflecting depletion of dopamine terminals within the striatum. To address these issues paraquat was administered systemically into adult C57 bl/6 mice, ambulatory behavior monitored, substantia nigra dopamine neuron number and striatal dopamine terminal density quantified. The data indicate that paraquat like MPTP elicits a dose-dependent decrease in substantia nigra dopaminergic neurons assessed by a Fluoro-gold prelabeling method, a decline in striatal dopamine nerve terminal density assessed by measurement of tyrosine hydroxylase immunoreactivity; and neurobehavioral syndrome characterized by reduced ambulatory activity. Taken together, these data suggest that systemically absorbed paraquat crosses the blood-brain barrier to cause destruction of dopamine neurons in the substantia nigra, consequent reduction of dopaminergic innervation of the striatum and a neurobehavioral syndrome similar to the well characterized and bona fide dopaminergic toxin MPTP.


Biological Psychiatry | 2005

Reelin signaling is impaired in autism.

S. Hossein Fatemi; Anne V. Snow; Joel M. Stary; Mohsen Araghi-Niknam; Teri J. Reutiman; Suzanne Lee; Andrew I. Brooks; David A. Pearce

BACKGROUND Autism is a severe neurodevelopmental disorder with genetic and environmental etiologies. Recent genetic linkage studies implicate Reelin glycoprotein in causation of autism. To further investigate these studies, brain levels of Reelin protein and mRNA and mRNAs for VLDLR, Dab-1, and GSK3 were investigated. METHODS Postmortem superior frontal, parietal, and cerebellar cortices of age, gender, and postmortem interval-matched autistic and control subjects were subjected to SDS-PAGE and Western blotting of Reelin protein. Quantitative reverse transcriptase polymerase chain reaction analysis of Reelin, VLDL-R, Dab-1, and GSK3 mRNA species in superior frontal and cerebellar cortices of autistic and control subjects were also performed. RESULTS Reelin 410, 330, and 180 kDa/beta-actin values were reduced significantly in frontal and cerebellar, and nonsignificantly in parietal, areas of autistic brains versus control subjects, respectively. The mRNAs for Reln and Dab-1 were reduced significantly whereas the mRNA for Reln receptor VLDLR was elevated significantly in superior frontal and cerebellar areas of autistic brains versus control brains, respectively. CONCLUSIONS Reductions in Reelin protein and mRNA and Dab 1 mRNA and elevations in Reln receptor VLDLR mRNA demonstrate impairments in the Reelin signaling system in autism, accounting for some of the brain structural and cognitive deficits observed in the disorder.


Nature Medicine | 2005

Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease.

Zhenhua Wu; Huang Guo; Nienwen Chow; Jan Sallstrom; Robert D. Bell; Rashid Deane; Andrew I. Brooks; Suhasini Kanagala; Anna Rubio; Abhay P. Sagare; Dong Liu; Fang Li; Don L. Armstrong; Thomas A. Gasiewicz; Raphael Zidovetzki; Xiaomei Song; Florence M. Hofman; Berislav V. Zlokovic

Neurovascular dysfunction substantially contributes to Alzheimer disease. Here, we show that transcriptional profiling of human brain endothelial cells (BECs) defines a subset of genes whose expression is age-independent but is considerably altered in Alzheimer disease, including the homeobox gene MEOX2 (also known as GAX), a regulator of vascular differentiation, whose expression is low in Alzheimer disease. By using viral-mediated MEOX2 gene silencing and transfer, we show that restoring expression of the protein it encodes, GAX, in BECs from individuals with Alzheimer disease stimulates angiogenesis, transcriptionally suppresses AFX1 forkhead transcription factor–mediated apoptosis and increases the levels of a major amyloid-β peptide (Aβ) clearance receptor, the low-density lipoprotein receptor–related protein 1 (LRP), at the blood-brain barrier. In mice, deletion of Meox2 (also known as Gax) results in reductions in brain capillary density and resting cerebral blood flow, loss of the angiogenic response to hypoxia in the brain and an impaired Aβ efflux from brain caused by reduced LRP levels. The link of MEOX2 to neurovascular dysfunction in Alzheimer disease provides new mechanistic and therapeutic insights into this illness.


Neurobiology of Disease | 2003

Defects in expression of genes related to synaptic vesicle traffickingin frontal cortex of Alzheimer’s disease

Pamela J. Yao; Min Zhu; Eunice I Pyun; Andrew I. Brooks; Stavros Therianos; Victoria E Meyers; Paul D. Coleman

Loss of synapses correlates with cognitive decline in Alzheimers disease (AD). However, molecular mechanisms underlying the synaptic dysfunction and loss are not well understood. In this study, microarray analysis of brain tissues from five AD cases revealed a reduced expression of a group of related genes, all of which are involved in synaptic vesicle (SV) trafficking. By contrast, several synaptic genes with functions other than vesicle trafficking remained unchanged. Quantitative RT-PCR confirmed and expanded the microarray findings. Furthermore, immunoblotting showed that the protein level of at least one of these gene products, dynamin I, correlated with its reduced transcript. Immunhistochemical analysis exhibited an altered distribution of dynamin I immunolabeling in AD neurons. Microarray analysis of transgenic mice with mutated amyloid precursor protein showed that although the transcript levels for some of the SV trafficking-related genes are also decreased, the change in dynamin did not replicate the AD pattern. The results suggest a link among SV vesicle-trafficking pathways, synaptic malfunction, and AD pathogenesis.


Journal of Immunology | 2000

Neuronal Fractalkine Expression in HIV-1 Encephalitis: Roles for Macrophage Recruitment and Neuroprotection in the Central Nervous System

Ning Tong; Seth W. Perry; Qing Zhang; Harold James; Huang Guo; Andrew I. Brooks; Harshawardhan P. Bal; Sandra A. Kinnear; Steven M. Fine; Leon G. Epstein; Daniel J. Dairaghi; Thomas J. Schall; Howard E. Gendelman; Stephen Dewhurst; Leroy R. Sharer; Harris A. Gelbard

HIV-1 infection of the brain results in chronic inflammation, contributing to the neuropathogenesis of HIV-1 associated neurologic disease. HIV-1-infected mononuclear phagocytes (MP) present in inflammatory infiltrates produce neurotoxins that mediate inflammation, dysfunction, and neuronal apoptosis. Neurologic disease is correlated with the relative number of MP in and around inflammatory infiltrates and not viral burden. It is unclear whether these cells also play a neuroprotective role. We show that the chemokine, fractalkine (FKN), is markedly up-regulated in neurons and neuropil in brain tissue from pediatric patients with HIV-1 encephalitis (HIVE) compared with those without HIVE, or that were HIV-1 seronegative. FKN receptors are expressed on both neurons and microglia in patients with HIVE. These receptors are localized to cytoplasmic structures which are characterized by a vesicular appearance in neurons which may be in cell-to-cell contact with MPs. FKN colocalizes with glutamate in these neurons. Similar findings are observed in brain tissue from an adult patient with HIVE. FKN is able to potently induce the migration of primary human monocytes across an endothelial cell/primary human fetal astrocyte trans-well bilayer, and is neuroprotective to cultured neurons when coadministered with either the HIV-1 neurotoxin platelet activating factor (PAF) or the regulatory HIV-1 gene product Tat. Thus focal inflammation in brain tissue with HIVE may up-regulate neuronal FKN levels, which in turn may be a neuroimmune modulator recruiting peripheral macrophages into the brain, and in a paracrine fashion protecting glutamatergic neurons.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Serum response factor and myocardin mediate arterial hypercontractility and cerebral blood flow dysregulation in Alzheimer's phenotype

Nienwen Chow; Robert D. Bell; Rashid Deane; Jeffrey W. Streb; Jiyuan Chen; Andrew I. Brooks; William E. Van Nostrand; Joseph M. Miano; Berislav V. Zlokovic

Cerebral angiopathy contributes to cognitive decline and dementia in Alzheimers disease (AD) through cerebral blood flow (CBF) reductions and dysregulation. We report vascular smooth muscle cells (VSMC) in small pial and intracerebral arteries, which are critical for CBF regulation, express in AD high levels of serum response factor (SRF) and myocardin (MYOCD), two interacting transcription factors that orchestrate a VSMC-differentiated phenotype. Consistent with this finding, AD VSMC overexpressed several SRF-MYOCD-regulated contractile proteins and exhibited a hypercontractile phenotype. MYOCD overexpression in control human cerebral VSMC induced an AD-like hypercontractile phenotype and diminished both endothelial-dependent and -independent relaxation in the mouse aorta ex vivo. In contrast, silencing SRF normalized contractile protein content and reversed a hypercontractile phenotype in AD VSMC. MYOCD in vivo gene transfer to mouse pial arteries increased contractile protein content and diminished CBF responses produced by brain activation in wild-type mice and in two AD models, the Dutch/Iowa/Swedish triple mutant human amyloid β-peptide (Aβ)-precursor protein (APP)- expressing mice and APPsw+/− mice. Silencing Srf had the opposite effect. Expression of SRF did not change in VSMC subjected to Alzheimers neurotoxin, Aβ. Thus, SRF-MYOCD overexpression in small cerebral arteries appears to initiate independently of Aβ a pathogenic pathway mediating arterial hypercontractility and CBF dysregulation, which are associated with Alzheimers dementia.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Functional correction of established central nervous system deficits in an animal model of lysosomal storage disease with feline immunodeficiency virus-based vectors

Andrew I. Brooks; Colleen S. Stein; Stephanie M. Hughes; Jason A. Heth; Paul M. McCray; Sybille L. Sauter; Julie C. Johnston; Deborah A. Cory-Slechta; Howard J. Federoff; Beverly L. Davidson

Gene transfer vectors based on lentiviruses can transduce terminally differentiated cells in the brain; however, their ability to reverse established behavioral deficits in animal models of neurodegeneration has not previously been tested. When recombinant feline immunodeficiency virus (FIV)-based vectors expressing β-glucuronidase were unilaterally injected into the striatum of adult β-glucuronidase deficient [mucopolysaccharidosis type VII (MPS VII)] mice, an animal model of lysosomal storage disease, there was bihemispheric correction of the characteristic cellular pathology. Moreover, after the injection of FIV-based vectors expressing β-glucuronidase into brains of β-glucuronidase-deficient mice with established impairments in spatial learning and memory, there was dramatic recovery of behavioral function. Cognitive improvement resulting from expression of β-glucuronidase was associated with alteration in expression of genes associated with neuronal plasticity. These data suggest that enzyme replacement to the MPS VII central nervous system goes beyond restoration of β-glucuronidase activity in the lysosome, and imparts improvements in plasticity and spatial learning.


Experimental Gerontology | 2004

Skeletal muscle gene expression profiles in 20-29 year old and 65-71 year old women.

Stephen Welle; Andrew I. Brooks; Joseph M. Delehanty; Nancy Needler; Kirti Bhatt; Bharati Shah; Charles A. Thornton

Gene expression profiling may provide leads for investigations of the molecular basis of functional declines associated with aging. In this study, high-density oligonucleotide arrays were used to probe the patterns of gene expression in skeletal muscle of seven young women (20-29 years old) and eight healthy older women (65-71 years old). The older subjects had reduced muscle mass, strength, and peak oxygen consumption relative to young women. There were approximately 1000 probe sets that suggested differential gene expression in younger and older muscle according to statistical criteria. The most highly overexpressed genes (>3-fold) in older muscle were p21 (cyclin-dependent kinase inhibitor 1A), which might reflect increased DNA damage, perinatal myosin heavy chain, which might reflect increased muscle fiber regeneration, and tomoregulin, which does not have a defined function in muscle. More than 40 genes encoding proteins that bind to pre-mRNAs or mRNAs were expressed at higher levels in older muscle. More than 100 genes involved in energy metabolism were expressed at lower levels in older muscle. In general, these results support previous observations on the differences in gene expression profiles between younger and older men.


Journal of NeuroVirology | 2004

Effects of human immunodeficiency virus type 1 on astrocyte gene expression and function: Potential role in neuropathogenesis

Zhuying Wang; Gusta Trillo-Pazos; Seon-Young Kim; Mario Canki; Susan Morgello; Leroy R. Sharer; Harris A. Gelbard; Zao-zhong Su; Dong-chul Kang; Andrew I. Brooks; Paul B. Fisher; David J. Volsky

Neurodegeneration and dementia caused by human immunodeficiency virus type 1 (HIV-1) infection of the brain are common complications of acquired immunodeficiency syndrome (AIDS). Introduction of highly active antiretroviral therapy (HAART) reduced the incidence of HIV-1-associated dementia, but so far had no effect on the high frequency of milder neurological disorders caused by HIV-1. This indicates that some neuropathogenic processes persist during limited HIV-1 replication in the central nervous system (CNS). The authors are evaluating the hypothesis that interaction of HIV-1 with astrocytes, which bind HIV-1 but support limited productive HIV-1 infection, may contribute to these processes by disrupting astrocyte functions that are important for neuronal activity or survival. Using laser-capture microdissection on brain tissue samples from HIV-1-infected individuals, we found that HIV-1 DNA can be detected in up to 1% of cortical and basal ganglia astrocytes, thus confirming HIV-1 infection in astrocytes from symptomatic patients. Using rapid subtraction hybridization, the authors cloned and identified 25 messenger RNAs in primary human fetal astrocytes either up-regulated or down-regulated by native HIV-1 infection or exposure to gp120 in vitro. Extending this approach to gene microarray analysis using Affymetrix U133A/B gene chips, the authors determined that HIV-1 alters globally and significantly the overall program of gene expression in astrocytes, including changes in transcripts coding for cytokines, G-coupled protein receptors, transcription factors, and others. Focusing on a specific astrocyte function relevant to neuropathogenesis, the authors showed that exposure of astrocytes to HIV-1 or gp120 in vitro impairs the ability of the cells to transport l-glutamate and the authors related this defect to transcriptional inhibition of the EAAT2 glutamate transporter gene. These findings define new pathways through which HIV-1 may contribute to neuropathogenesis under conditions of limited virus replication in the brain.


BMC Bioinformatics | 2005

The effects of normalization on the correlation structure of microarray data.

Xing Qiu; Andrew I. Brooks; Lev B. Klebanov; Andrei Yakovlev

BackgroundStochastic dependence between gene expression levels in microarray data is of critical importance for the methods of statistical inference that resort to pooling test-statistics across genes. It is frequently assumed that dependence between genes (or tests) is suffciently weak to justify the proposed methods of testing for differentially expressed genes. A potential impact of between-gene correlations on the performance of such methods has yet to be explored.ResultsThe paper presents a systematic study of correlation between the t-statistics associated with different genes. We report the effects of four different normalization methods using a large set of microarray data on childhood leukemia in addition to several sets of simulated data. Our findings help decipher the correlation structure of microarray data before and after the application of normalization procedures.ConclusionA long-range correlation in microarray data manifests itself in thousands of genes that are heavily correlated with a given gene in terms of the associated t-statistics. By using normalization methods it is possible to significantly reduce correlation between the t-statistics computed for different genes. Normalization procedures affect both the true correlation, stemming from gene interactions, and the spurious correlation induced by random noise. When analyzing real world biological data sets, normalization procedures are unable to completely remove correlation between the test statistics. The long-range correlation structure also persists in normalized data.

Collaboration


Dive into the Andrew I. Brooks's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tkachuk Va

Moscow State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Berislav V. Zlokovic

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Charles A. Thornton

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Marc W. Halterman

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge