Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Isaac Meso is active.

Publication


Featured researches published by Andrew Isaac Meso.


Journal of Computational Neuroscience | 2014

Bifurcation study of a neural field competition model with an application to perceptual switching in motion integration

James Rankin; Andrew Isaac Meso; Guillaume S. Masson; Olivier D. Faugeras; Pierre Kornprobst

Perceptual multistability is a phenomenon in which alternate interpretations of a fixed stimulus are perceived intermittently. Although correlates between activity in specific cortical areas and perception have been found, the complex patterns of activity and the underlying mechanisms that gate multistable perception are little understood. Here, we present a neural field competition model in which competing states are represented in a continuous feature space. Bifurcation analysis is used to describe the different types of complex spatio-temporal dynamics produced by the model in terms of several parameters and for different inputs. The dynamics of the model was then compared to human perception investigated psychophysically during long presentations of an ambiguous, multistable motion pattern known as the barberpole illusion. In order to do this, the model is operated in a parameter range where known physiological response properties are reproduced whilst also working close to bifurcation. The model accounts for characteristic behaviour from the psychophysical experiments in terms of the type of switching observed and changes in the rate of switching with respect to contrast. In this way, the modelling study sheds light on the underlying mechanisms that drive perceptual switching in different contrast regimes. The general approach presented is applicable to a broad range of perceptual competition problems in which spatial interactions play a role.


Biological Cybernetics | 2009

Speed encoding in correlation motion detectors as a consequence of spatial structure

Andrew Isaac Meso; Johannes M. Zanker

For animals to carry out a wide range of detection, recognition and navigation tasks, visual motion signals are crucial. The encoding of motion information has therefore, attracted much attention in the experimental and computational study of brain function. Two main alternative mechanisms have been proposed on the basis of behavioural and physiological experiments. On one hand, correlation-type and motion energy detectors are simple and efficient in the design of their basic mechanism but are tuned to temporal frequency rather than to speed. On other hand, gradient-type motion detectors directly represent an estimate of speed, but may require more demanding processing mechanisms. We demonstrate here how the temporal frequency dependence observed for sine-wave gratings can disappear for less constrained stimuli, to be replaced by responses reflecting speed for stimuli like square waves when a phase-sensitive detection mechanism is employed. We conclude from these observations that temporal frequency tuning is not necessarily a limitation for motion vision based on correlation detectors, and more generally demonstrate in view of the typical Fourier composition of natural scenes, that correlation detectors operating in such environments can encode image speed. In the context of our results, we discuss the implications of the loss of phase sensitivity inherent in using a linear system approach to describe neural processing.


Vision Research | 2010

Visual motion gradient sensitivity shows scale invariant spatial frequency and speed tuning properties.

Andrew Isaac Meso; Robert F. Hess

We investigated sensitivity to motion gradients psychophysically using a band-pass filtered white noise stimulus with two superimposed components moving in opposite directions and spatially modulated with out of phase periodic functions. An optimum sensitivity ratio of the carrier to the modulator frequency of about 11 was measured. Tuning for speed was also observed, with sensitivity falling off at higher speeds in a trend showing scale invariance, consistent with temporal frequency tuning. Similar tuning properties were observed for both luminance and motion contrast thresholds. These findings are consistent with local and global processes in striate and extra-striate cortex respectively and suggest the scale of second stage low frequency integration is broad and matched to the spatiotemporal scale of the sensitivity of first stage local filters. The finding of scale invariance over a large range in stimulus size of 4.6-37 degrees of visual angle suggest a general property of integrating neural mechanisms, which was identified here because of the use of narrowband stimuli.


Vision Research | 2009

Perceiving motion transparency in the absence of component direction differences

Andrew Isaac Meso; Johannes M. Zanker

The simultaneous perception of multiple motion components within the same region in the visual field is a difficult processing task, which can be solved by human observers for a range of transparently moving stimuli. We use transparently moving gratings to study this phenomenon psychophysically, focussing on configurations in which individual components move in the same direction and can only be discriminated by speed differences. We first demonstrate that the stimuli are perceived as transparent and then proceed to quantify how the strength of motion transparency changes while component grating parameters such as fundamental spatial frequency, speed and luminance are varied. The results were consistent with perception resolving a signal detection task of separating two superimposed global motion signals corresponding to each of the components. We also identify the importance of broadband stimuli containing edges, both for perceiving transparency with the same direction stimulus configuration, and for static transparency. The local density of edges has a direct influence on the strength of perceived transparency, suggesting that local motion detection at the edges of the stimuli, which is sensitive to speed differences, may be critical to solve the task. The work suggests that there may be a simultaneous retinotopic representation of the two speeds of motion analogous to that accomplished by the motion direction tuned neurons found across regions of visual cortex.


Journal of The Optical Society of America A-optics Image Science and Vision | 2011

Orientation gradient detection exhibits variable coupling between first- and second-stage filtering mechanisms.

Andrew Isaac Meso; Robert F. Hess

We investigated sensitivity to orientation modulation using visual stimuli with bandpass filtered noise carriers. We characterized the relationship between the spatial parameters of the modulator and the carrier using a 2-AFC detection task. The relationship between these two parameters is potentially informative of the underlying coupling between first- and second-stage filtering mechanisms, which, in turn, may bear on the interrelationship between striate and extrastriate cortical processing. Our previous experiments on analogous motion stimuli found an optimum sensitivity when the ratio of the carrier and modulator spatial frequency parameters (r) was approximately ten. The current results do not exhibit an optimum sensitivity at a given value of the ratio r. Previous experiments involving second-order modulation sensitivity show an inconsistent range of estimates of optimum sensitivity at values of r between 5 and 50. Our results, using a complementary approach, confirm these discrepancies, demonstrating that the coupling between carrier and modulator frequency parameters depends on a number of stimulus-specific factors, such as contrast sensitivity, stimulus eccentricity, and absolute values of the carrier and modulator spatial frequency parameters. We show that these observations are true for a stimulus limited in eccentricity and that this orientation-modulated stimulus does not exhibit scale invariance. Such processing can not be modeled by a generic filter-rectify-filter model.


Journal of Vision | 2016

The relative contribution of noise and adaptation to competition during tri-stable motion perception

Andrew Isaac Meso; James Rankin; Olivier D. Faugeras; Pierre Kornprobst; Guillaume S. Masson

Animals exploit antagonistic interactions for sensory processing and these can cause oscillations between competing states. Ambiguous sensory inputs yield such perceptual multistability. Despite numerous empirical studies using binocular rivalry or plaid pattern motion, the driving mechanisms behind the spontaneous transitions between alternatives remain unclear. In the current work, we used a tristable barber pole motion stimulus combining empirical and modeling approaches to elucidate the contributions of noise and adaptation to underlying competition. We first robustly characterized the coupling between perceptual reports of transitions and continuously recorded eye direction, identifying a critical window of 480 ms before button presses, within which both measures were most strongly correlated. Second, we identified a novel nonmonotonic relationship between stimulus contrast and average perceptual switching rate with an initially rising rate before a gentle reduction at higher contrasts. A neural fields model of the underlying dynamics introduced in previous theoretical work and incorporating noise and adaptation mechanisms was adapted, extended, and empirically validated. Noise and adaptation contributions were confirmed to dominate at the lower and higher contrasts, respectively. Model simulations, with two free parameters controlling adaptation dynamics and direction thresholds, captured the measured mean transition rates for participants. We verified the shift from noise-dominated toward adaptation-driven in both the eye direction distributions and intertransition duration statistics. This work combines modeling and empirical evidence to demonstrate the signal-strength-dependent interplay between noise and adaptation during tristability. We propose that the findings generalize beyond the barber pole stimulus case to ambiguous perception in continuous feature spaces.


Journal of Neurophysiology | 2016

Looking for symmetry: fixational eye movements are biased by image mirror symmetry

Andrew Isaac Meso; Anna Montagnini; Jason Bell; Guillaume S. Masson

Humans are highly sensitive to symmetry. During scene exploration, the area of the retina with dense light receptor coverage acquires most information from relevant locations determined by gaze fixation. We characterized patterns of fixational eye movements made by observers staring at synthetic scenes either freely (i.e., free exploration) or during a symmetry orientation discrimination task (i.e., active exploration). Stimuli could be mirror-symmetric or not. Both free and active exploration generated more saccades parallel to the axis of symmetry than along other orientations. Most saccades were small (<2°), leaving the fovea within a 4° radius of fixation. Analysis of saccade dynamics showed that the observed parallel orientation selectivity emerged within 500 ms of stimulus onset and persisted throughout the trials under both viewing conditions. Symmetry strongly distorted existing anisotropies in gaze direction in a seemingly automatic process. We argue that this bias serves a functional role in which adjusted scene sampling enhances and maintains sustained sensitivity to local spatial correlations arising from symmetry.


Journal of Vision | 2015

Numerosity and density judgments: biases for area but not for volume.

Jason Bell; Aaron Manson; Mark Edwards; Andrew Isaac Meso

Human observers can rapidly judge the number of items in a scene. This ability is underpinned by specific mechanisms encoding number or density. We investigated whether judgments of number and density are biased by a change in volume, as they are by a change in area. Stimuli were constructed using nonoverlapping black and white luminance-defined dots. An eight-mirror Wheatstone stereoscope was used to present the dots as though in a volume. Using a temporal two-alternative forced-choice (2AFC) task and the Method of Constant Stimuli (MOCS), we measured the precision and bias (PSE shift) of numerosity and density judgments, separately, for stimuli differing in area or volume. For two-dimensional (2-D) stimuli, consistent with previous literature, perceived density was biased as area increased. However, perceived number was not. For three-dimensional (3-D) stimuli, despite a vivid impression of the dots filling a cylindrical volume, there was no bias in perceived density or number as volume increased. A control experiment showed that all of our observers could easily perceive disparity in our stimuli. Our findings reveal that number and density judgments that are biased by area are not similarly biased by volume changes.


Journal of Vision | 2014

Contour inflections are adaptable features.

Jason Bell; Sinthujaa Sampasivam; David P. McGovern; Andrew Isaac Meso; Frederick A. A. Kingdom

An objects shape is a strong cue for visual recognition. Most models of shape coding emphasize the role of oriented lines and curves for coding an objects shape. Yet inflection points, which occur at the junction of two oppositely signed curves, are ubiquitous features in natural scenes and carry important information about the shape of an object. Using a visual aftereffect in which the perceived shape of a contour is changed following prolonged viewing of a slightly different-shaped contour, we demonstrate a specific aftereffect for a contour inflection. Control conditions show that this aftereffect cannot be explained by adaptation to either the component curves or to the local orientation at the point of inflection. Further, we show that the aftereffect transfers weakly to a compound curve without an inflection, ruling out a general compound curvature detector as an explanation of our findings. We assume however that there are adaptable mechanisms for coding other specific forms of compound curves. Taken together, our findings provide evidence that the human visual system contains specific mechanisms for coding contour inflections, further highlighting their role in shape and object coding.


Neuroscience Letters | 2011

A visual field dependent architecture for second order motion processing.

Andrew Isaac Meso; Robert F. Hess

The visual system exploits a cortical hierarchy to process complex inputs such as those defined by modulations of motion and/or texture. One class of visual stimuli, composed of alternate stripes of opposing motion requires at least 2 separate stages of computation within this cortical hierarchy, thought to involve cortical area V1 and extra-striate regions like global motion area MT respectively. Using a psychophysical task, we characterise sensitivity to such stimuli containing periodic spatial modulations of motion gradients as a function of the ratio of the spatial parameters at the two processing levels by manipulating the spatial properties of the carrier and modulator. We find band-passed functions for foveal stimulus presentations showing an optimum sensitivity at ratios in the range of r≤10, informative of the coupling relationship between frequency channels at the carrier and modulator levels. An annulus stimulus (excluding the fovea) with a radius of 15.5° exhibited optima of sensitivity at r>15. This difference in the optimal coupling between filtering stages reflects a processing architecture that changes with eccentricity, consistent with the previously observed smaller differences between mean receptive field sizes in striate and extra-striate filtering stages in the fovea compared to the periphery. This is also important for visual psychophysics when comparing sensitivity for first and second order stimuli across retinal eccentricity.

Collaboration


Dive into the Andrew Isaac Meso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Rankin

Center for Neural Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason Bell

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikos Gekas

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Pascal Mamassian

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge