Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew J. Boydston is active.

Publication


Featured researches published by Andrew J. Boydston.


Journal of the Royal Society Interface | 2007

Towards electrically conductive, self-healing materials

Kyle A. Williams; Andrew J. Boydston; Christopher W. Bielawski

A novel class of organometallic polymers comprising N-heterocyclic carbenes and transition metals was shown to have potential as an electrically conductive, self-healing material. These polymers were found to exhibit conductivities of the order of 10−3 S cm−1 and showed structurally dynamic characteristics in the solid-state. Thin films of these materials were cast onto silicon wafers, then scored and imaged using a scanning electron microscopy (SEM). The scored films were subsequently healed via thermal treatment, which enabled the material to flow via a unique depolymerization process, as determined by SEM and surface profilometry. A method for incorporating these features into a device that exhibits electrically driven, self-healing functions is proposed.


Journal of the American Chemical Society | 2009

A direct route to cyclic organic nanostructures via ring-expansion metathesis polymerization of a dendronized macromonomer

Andrew J. Boydston; Thomas W. Holcombe; David A. Unruh; Jean M. J. Fréchet; Robert H. Grubbs

Cyclic organic nanostructures were prepared via ring-expansion metathesis polymerization of a dendronized norbornene macromonomer. The strategy provides a direct, efficient route to nanoscale rings in a single operation. AFM imaging confirmed toroidal features having diameters of ca. 35-40 nm.


Journal of the American Chemical Society | 2013

Flex-activated mechanophores: using polymer mechanochemistry to direct bond bending activation.

Michael B. Larsen; Andrew J. Boydston

We describe studies in mechanochemical transduction that probe the activation of bonds orthogonal to an elongated polymer main chain. Compression of mechanophore-cross-linked materials resulted in the release of small molecules via cleavage of covalent bonds that were not integral components of the elongated polymer segments. The reactivity is proposed to arise from the distribution of force through the cross-linking units of the polymer network and subsequent bond bending motions that are consistent with the geometric changes in the overall reaction. This departure from contemporary polymer mechanochemistry, in which activation is achieved primarily by force-induced bond elongation, is a first step toward mechanophores capable of releasing side-chain functionalities without inherently compromising the overall macromolecular architecture.


Journal of the American Chemical Society | 2008

Modular fluorescent benzobis(imidazolium) salts: syntheses, photophysical analyses, and applications.

Andrew J. Boydston; Peter D. Vu; Olga L. Dykhno; Vicki Chang; Alvin R. Wyatt; Adam S. Stockett; Eric T. Ritschdorff; and Jason B. Shear; Christopher W. Bielawski

A series of benzobis(imidazolium) (BBI) salts has been prepared and studied as a new class of versatile fluorescent materials. Using a high yielding, modular synthetic strategy, BBI salts with a range of functionality poised for investigating fundamental and applications-oriented characteristics, including emission wavelength tunability, solvatochromism, red-edge excitation, chemical stability, multiphoton excitation, and protein conjugation, were prepared in overall yields of 40-97%. Through structural variation, the BBIs exhibited lambda(em) ranging between 329 and 561 nm while displaying phi(f)s up to 0.91. In addition, the emission characteristics of these salts were found to exhibit strong solvent dependencies with Stokes shifts ranging from 4570 to 13 793 cm(-1), depending on the nature of the BBI core. Although red-edge effects for BBI salts with Br and BF4 counterions were found to be similar, unique characteristics were displayed by an analogue with MeSO4 anions. The stability of an amphiphilic BBI was quantified in aqueous solutions of varying pH, and >85% of the emission intensity was retained after 2 h at pH 3-9. Through multiphoton excitation experiments in aqueous solutions, a BBI salt was found to exhibit three-photon fluorescence action cross sections similar to serotonin. The application of BBI salts as fluorescent protein tags was demonstrated by conjugating bovine serum albumin to a maleimide-functionalized derivative.


Journal of the American Chemical Society | 2008

Cyclic Ruthenium-Alkylidene Catalysts for Ring-Expansion Metathesis Polymerization

Andrew J. Boydston; Yan Xia; Julia A. Kornfield; Irina A. Gorodetskaya; Robert H. Grubbs

A series of cyclic Ru-alkylidene catalysts have been prepared and evaluated for their efficiency in ring-expansion metathesis polymerization (REMP). The catalyst structures feature chelating tethers extending from one N-atom of an N-heterocyclic carbene (NHC) ligand to the Ru metal center. The catalyst design is modular in nature, which provided access to Ru complexes having varying tether lengths, as well as electronically different NHC ligands. Structural impacts of the tether length were unveiled through (1)H NMR spectroscopy as well as single-crystal X-ray analyses. Catalyst activities were evaluated via polymerization of cyclooctene, and key data are provided regarding propagation rates, intramolecular chain transfer, and catalyst stabilities, three areas necessary for the efficient synthesis of cyclic poly(olefin)s via REMP. From these studies, it was determined that while increasing the tether length of the catalyst leads to enhanced rates of polymerization, shorter tethers were found to facilitate intramolecular chain transfer and release of catalyst from the polymer. Electronic modification of the NHC via backbone saturation was found to enhance polymerization rates to a greater extent than did homologation of the tether. Overall, cyclic Ru complexes bearing 5- or 6-carbon tethers and saturated NHC ligands were found to be readily synthesized, bench-stable, and highly active catalysts for REMP.


Journal of the American Chemical Society | 2012

Organocatalyzed anodic oxidation of aldehydes.

Eric E. Finney; Kelli A. Ogawa; Andrew J. Boydston

A method for the catalytic formation of electroauxiliaries and subsequent anodic oxidation has been developed. The process interfaces N-heterocyclic carbene-based organocatalysis with electro-organic synthesis to achieve direct oxidation of catalytically generated electroactive intermediates. We demonstrate the applicability of this method as a one-pot conversion of aldehydes to esters for a broad range of aldehyde and alcohol substrates. Furthermore, the anodic oxidation reactions are very clean, producing only H(2) gas as a result of cathodic reduction.


ACS Applied Materials & Interfaces | 2015

3D-printed mechanochromic materials.

Gregory I. Peterson; Michael B. Larsen; Mark A. Ganter; Duane W. Storti; Andrew J. Boydston

We describe the preparation and characterization of photo- and mechanochromic 3D-printed structures using a commercial fused filament fabrication printer. Three spiropyran-containing poly(ε-caprolactone) (PCL) polymers were each filamentized and used to print single- and multicomponent tensile testing specimens that would be difficult, if not impossible, to prepare using traditional manufacturing techniques. It was determined that the filament production and printing process did not degrade the spiropyran units or polymer chains and that the mechanical properties of the specimens prepared with the custom filament were in good agreement with those from commercial PCL filament. In addition to printing photochromic and dual photo- and mechanochromic PCL materials, we also prepare PCL containing a spiropyran unit that is selectively activated by mechanical impetus. Multicomponent specimens containing two different responsive spiropyrans enabled selective activation of different regions within the specimen depending on the stimulus applied to the material. By taking advantage of the unique capabilities of 3D printing, we also demonstrate rapid modification of a prototype force sensor that enables the assessment of peak load by simple visual assessment of mechanochromism.


Journal of the American Chemical Society | 2015

Metal-Free Ring-Opening Metathesis Polymerization

Kelli A. Ogawa; Adam E. Goetz; Andrew J. Boydston

We have developed a method to achieve ring-opening metathesis polymerization (ROMP) mediated by oxidation of organic initiators in the absence of any transition metals. Radical cations, generated via one-electron oxidation of vinyl ethers, were found to react with norbornene to give polymeric species with microstructures essentially identical to those traditionally obtained via metal-mediated ROMP. We found that vinyl ether oxidation could be accomplished under mild conditions using an organic photoredox mediator. This led to high yields of polymer and generally good correlation between M(n) values and initial monomer to catalyst loadings. Moreover, temporal control over reinitiation of polymer growth was achieved during on/off cycles of light exposure. This method demonstrates the first metal-free method for controlled ROMP.


Nature Chemistry | 2014

Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer

Charles E. Diesendruck; Gregory I. Peterson; Heather J. Kulik; Joshua A. Kaitz; Brendan D. Mar; Preston A. May; Scott R. White; Todd J. Martínez; Andrew J. Boydston; Jeffrey S. Moore

Biological systems rely on recyclable materials resources such as amino acids, carbohydrates and nucleic acids. When biomaterials are damaged as a result of aging or stress, tissues undergo repair by a depolymerization–repolymerization sequence of remodelling. Integration of this concept into synthetic materials systems may lead to devices with extended lifetimes. Here, we show that a metastable polymer, end-capped poly(o-phthalaldehyde), undergoes mechanically initiated depolymerization to revert the material to monomers. Trapping experiments and steered molecular dynamics simulations are consistent with a heterolytic scission mechanism. The obtained monomer was repolymerized by a chemical initiator, effectively completing a depolymerization–repolymerization cycle. By emulating remodelling of biomaterials, this model system suggests the possibility of smart materials where aging or mechanical damage triggers depolymerization, and orthogonal conditions regenerate the polymer when and where necessary. Strong acoustic fields applied to solutions of linear polymers typically result in mid-chain scission, yielding products half the molecular weight of the original. Now it has been shown that poly(o-phthalaldehyde), a polymer with a ceiling temperature below room temperature, undergoes chain scission and subsequent depolymerization to monomers. Introduction of an appropriate initiator to the monomer regenerates poly(o-phthaladehyde) macromolecules.


Journal of the American Chemical Society | 2009

Ring-Expansion Metathesis Polymerization: Catalyst-Dependent Polymerization Profiles

Yan Xia; Andrew J. Boydston; Yefeng Yao; Julia A. Kornfield; Irina A. Gorodetskaya; Hans Wolfgang Spiess; Robert H. Grubbs

Ring-expansion metathesis polymerization (REMP) mediated by recently developed cyclic Ru catalysts has been studied in detail with a focus on the polymer products obtained under varied reaction conditions and catalyst architectures. Depending upon the nature of the catalyst structure, two distinct molecular weight evolutions were observed. Polymerization conducted with catalysts bearing six-carbon tethers displayed rapid polymer molecular weight growth which reached a maximum value at ca. 70% monomer conversion, resembling a chain-growth polymerization mechanism. In contrast, five-carbon-tethered catalysts led to molecular weight growth that resembled a step-growth mechanism with a steep increase occurring only after 95% monomer conversion. The underlying reason for these mechanistic differences appeared to be ready release of five-carbon-tethered catalysts from growing polymer rings, which competed significantly with propagation. Owing to reversible chain transfer and the lack of end groups in REMP, the final molecular weights of cyclic polymers was controlled by thermodynamic equilibria. Large ring sizes in the range of 60-120 kDa were observed at equilibrium for polycyclooctene and polycyclododecatriene, which were found to be independent of catalyst structure and initial monomer/catalyst ratio. While six-carbon-tethered catalysts were slowly incorporated into the formed cyclic polymer, the incorporation of five-carbon-tethered catalysts was minimal, as revealed by ICP-MS. Further polymer analysis was conducted using melt-state magic-angle spinning (13)C NMR spectroscopy of both linear and cyclic polymers, which revealed little or no chain ends for the latter topology.

Collaboration


Dive into the Andrew J. Boydston's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher W. Bielawski

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Robert H. Grubbs

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Adam E. Goetz

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelli A. Ogawa

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Ganter

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge