Andrew J. Darwin
New York University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew J. Darwin.
Molecular Microbiology | 2005
Andrew J. Darwin
The phage‐shock‐protein (Psp) system responds to extracytoplasmic stress that may reduce the energy status of the cell. It is conserved in many different bacteria and has been linked to several important phenotypes. Escherichia coli psp mutants have defects in maintenance of the proton‐motive force, protein export by the sec and tat pathways, survival in stationary phase at alkaline pH, and biofilm formation. Yersinia enterocolitica psp mutants cannot grow when the secretin component of a type III secretion system is mislocalized, and have a severe virulence defect in animals. A Salmonella enterica psp mutation exacerbates some phenotypes of an rpoE null mutant and the psp genes of S. enterica and Shigella flexneri are highly induced during macrophage infection. PspA, the most abundant of the Psp proteins, is required for most of the phenotypes associated with the Psp system. Therefore, PspA is probably an effector that may play a role in maintaining cytoplasmic membrane integrity and/or the proton‐motive force. However, PspA is not required for the ability to tolerate secretin mislocalization, which suggests an important physiological role for other Psp proteins. This article summarizes our current understanding of the Psp system: inducing signals, the underlying signal transduction mechanisms, the physiological roles it may play, and a genomic analysis of its conservation.
Molecular Microbiology | 1999
Andrew J. Darwin; Virginia L. Miller
Pathogenic Yersinia species are associated with both localized and systemic infections in mammalian hosts. In this study, signature‐tagged transposon mutagenesis was used to identify Yersinia enterocolitica genes required for survival in a mouse model of infection. Approximately 2000 transposon insertion mutants were screened for attenuation. This led to the identification of 55 mutants defective for survival in the animal host, as judged by their ability to compete with the wild‐type strain in mixed infections. A total of 28 mutants had transposon insertions in the virulence plasmid, validating the screen. Two of the plasmid mutants with severe virulence defects had insertions in an uncharacterized region. Several of the chromosomal insertions were in a gene cluster involved in O‐antigen biosynthesis. Other chromosomal insertions identified genes not previously demonstrated as being required for in vivo survival of Y. enterocolitica. These include genes involved in the synthesis of outer membrane components, stress response and nutrient acquisition. One severely attenuated mutant had an insertion in a homologue of the pspC gene (phage shock protein C) of Escherichia coli. The phage shock protein operon has no known biochemical or physiological function in E. coli, but is apparently essential for the survival of Y. enterocolitica during infection.
Journal of Bacteriology | 2002
Valley Stewart; Yiran Lu; Andrew J. Darwin
Periplasmic nitrate reductase (NapABC enzyme) has been characterized from a variety of proteobacteria, especially Paracoccus pantotrophus. Whole-genome sequencing of Escherichia coli revealed the structural genes napFDAGHBC, which encode NapABC enzyme and associated electron transfer components. E. coli also expresses two membrane-bound proton-translocating nitrate reductases, encoded by the narGHJI and narZYWV operons. We measured reduced viologen-dependent nitrate reductase activity in a series of strains with combinations of nar and nap null alleles. The napF operon-encoded nitrate reductase activity was not sensitive to azide, as shown previously for the P. pantotrophus NapA enzyme. A strain carrying null alleles of narG and narZ grew exponentially on glycerol with nitrate as the respiratory oxidant (anaerobic respiration), whereas a strain also carrying a null allele of napA did not. By contrast, the presence of napA+ had no influence on the more rapid growth of narG+ strains. These results indicate that periplasmic nitrate reductase, like fumarate reductase, can function in anaerobic respiration but does not constitute a site for generating proton motive force. The time course of phi(napF-lacZ) expression during growth in batch culture displayed a complex pattern in response to the dynamic nitrate/nitrite ratio. Our results are consistent with the observation that phi(napF-lacZ) is expressed preferentially at relatively low nitrate concentrations in continuous cultures (H. Wang, C.-P. Tseng, and R. P. Gunsalus, J. Bacteriol. 181:5303-5308, 1999). This finding and other considerations support the hypothesis that NapABC enzyme may function in E. coli when low nitrate concentrations limit the bioenergetic efficiency of nitrate respiration via NarGHI enzyme.
Molecular Microbiology | 2001
Andrew J. Darwin; Virginia L. Miller
The phage shock protein locus (pspFpspABCDE) of Escherichia coli has proved to be something of an enigma since its discovery. The physiological functions of the psp locus, including those of the predicted effector protein PspA, are unknown. In a previous genetic screen, we determined that a Yersinia enterocolitica pspC mutant was severely attenuated for virulence. In this study, the psp locus of Y. enterocolitica was characterized further. The pspC gene of Y. enterocolitica was found to be important for normal growth when the Ysc type III secretion system was expressed in the laboratory. This growth defect was specifically caused by production of the secretin protein, YscC. Expression of the psp genes was induced when the type III secretion system was functional or when only the yscC gene was expressed. This induction of psp gene expression required a functional pspC gene. Most significantly, evidence suggests that the expression of at least one gene that is not part of the psp locus is regulated by Psp proteins. This unidentified gene (or genes) may also be important for growth when the type III secretion system is expressed. These conclusions are supported by the effects of various psp mutations on virulence. This is the first indication that Psp proteins might be involved in the regulation of genes besides the psp locus itself.
Journal of Bacteriology | 2004
Michelle E. Maxson; Andrew J. Darwin
Known inducers of the phage shock protein (Psp) system suggest that it is an extracytoplasmic stress response, as are the well-studied RpoE and Cpx systems. However, a random approach to identify conditions and proteins that induce the Psp system has not been attempted. It is also unknown whether the proteins or mutations that induce Psp are specific or if they also activate the RpoE and Cpx systems. This study addressed these issues for the Yersinia enterocolitica Psp system. Random transposon mutagenesis identified null mutations and overexpression mutations that increase Phi(pspA-lacZ) operon fusion expression. The results suggest that Psp may respond exclusively to extracytoplasmic stress. Null mutations affected glucosamine-6-phosphate synthetase (glmS), which plays a role in cell envelope biosynthesis, and the F0F1 ATPase (atp operon). The screen also revealed that in addition to several secretins, the overexpression of three novel putative inner membrane proteins (IMPs) induced the Psp response. We also compared induction of the Y. enterocolitica Psp, RpoE, and Cpx responses. Overexpression of secretins or the three IMPs or the presence of an atpB null mutation only induced the Psp response. Similarly, known inducers of the RpoE and Cpx responses did not significantly induce the Psp response. Only the glmS null mutation induced all three responses. Therefore, Psp is induced distinctly from the RpoE and Cpx systems. The specific IMP inducers may be valuable tools to probe specific signal transduction events of the Psp response in future studies.
Molecular Microbiology | 2006
Michelle E. Maxson; Andrew J. Darwin
The phage‐shock‐protein (Psp) stress‐response system is conserved in many bacteria and has been linked to important phenotypes in Escherichia coli, Salmonella enterica and also Yersinia enterocolitica, where it is essential for virulence. It is activated by specific extracytoplasmic stress events such as the mislocalization of secretin proteins. From studies of the Psp system in E. coli, the cytoplasmic membrane proteins PspB and PspC have only been proposed to act as positive regulators of psp gene expression. However, in this study we show that PspB and PspC of Y. enterocolitica are dual function proteins, acting both as regulators and effectors of the Psp system. Consistent with the current model, they positively control psp gene expression in response to diverse inducing cues. PspB and PspC must work together to achieve this regulatory function, and bacterial two‐hybrid (BACTH) analysis demonstrated a specific interaction between them, which was confirmed by in vivo cross‐linking. We also show that PspB and PspC play a second role in supporting growth when a secretin protein is overexpressed. This function is independent from their role as regulators of psp gene expression. Furthermore, whereas PspB and PspC must work together for their regulatory function, they can apparently act independently to support growth during secretin production. This study expands the current understanding of the roles played by PspB and PspC, and demonstrates that they cannot be considered only as positive regulators of psp gene expression in Y. enterocolitica.
Journal of Bacteriology | 2004
Rebecca C. Green; Andrew J. Darwin
The Yersinia enterocolitica phage shock protein (Psp) system is induced when the Ysc type III secretion system is produced or when only the YscC secretin component is synthesized. Some psp null mutants have a growth defect when YscC is produced and a severe virulence defect in animals. The Y. enterocolitica psp locus is made up of two divergently transcribed cistrons, pspF and pspABCDycjXF. pspA operon expression is dependent on RpoN (sigma(54)) and the enhancer-binding protein PspF. Previous data indicated that PspF also controls at least one gene that is not part of the psp locus. In this study we describe the identification of pspG, a new member of the PspF regulon. Predicted RpoN-binding sites upstream of the pspA genes from different bacteria have a common divergence from the consensus sequence, which may be a signature of PspF-dependent promoters. The Y. enterocolitica pspG gene was identified because its promoter also has this signature. Like the pspA operon, pspG is positively regulated by PspF, negatively regulated by PspA, and induced in response to the production of secretins. Purified His(6)-PspF protein specifically interacts with the pspA and pspG control regions. A pspA operon deletion mutant has a growth defect when the YscC secretin is produced and a virulence defect in a mouse model of infection. These phenotypes were exacerbated by a pspG null mutation. Therefore, PspG is the missing component of the Y. enterocolitica Psp regulon that was previously predicted to exist.
Molecular Microbiology | 2007
Jin Seo; Diana C. Savitzky; Emily S. Ford; Andrew J. Darwin
The phage‐shock‐protein (Psp) system is essential for Yersinia enterocolitica virulence. Mislocalized secretins induce psp gene expression, and kill psp null strains. We used transposon mutagenesis to investigate whether other genes are required to tolerate secretin‐induced stress. Our motivation included the possibility of identifying signal transducers required to activate psp gene expression. Besides Psp, only defects in the RpoE system and the TrkA potassium transporter caused secretin sensitivity. These mutations did not cause the same specific/severe sensitivity as defects in the Psp system, nor did they affect psp gene expression. The Escherichia coli Psp system was reported to be induced via the ArcB redox sensor and to activate anaerobic metabolism. Our screen did not identify arcB, or any genes involved in anaerobic metabolism/regulation. Therefore, we investigated the role of ArcB in Y. enterocolitica and E. coli. ArcB was not required for secretin‐dependent induction of psp gene expression. Furthermore, microarray analysis uncovered a restricted transcriptional response to prolonged secretin stress in Y. enterocolitica. Taken together, these data do not support the proposal that the Psp system is induced via ArcB and activates anaerobic metabolism. Rather, they suggest that Psp proteins may sense an inducing trigger and mediate their physiological output(s) directly.
PLOS Pathogens | 2013
Andrew J. Darwin
Inducible extracytoplasmic stress responses (ESRs) help to maintain the integrity and function of the bacterial cell envelope in unfavorable conditions. ESRs can also have highly specialized functions linked to virulence-associated systems directly. One of the most intriguing and yet enigmatic examples is the widely conserved phage shock protein (Psp) response [1]–[4]. This article outlines the significance of envelope stress and the roles of the Psp response in supporting bacterial virulence. This particular ESR might be critical for different reasons in different bacteria, with implications for both extracellular and intracellular pathogenesis, as well as processes that include antibiotic resistance and biofilm formation.
Molecular Microbiology | 2010
Saori Yamaguchi; Erwan Gueguen; N. Kaye Horstman; Andrew J. Darwin
Regulation of the bacterial phage‐shock‐protein (Psp) system involves communication between integral (PspBC) and peripheral (PspA) cytoplasmic membrane proteins and a soluble transcriptional activator (PspF). In this study protein subcellular localization studies were used to distinguish between spatial models for this putative signal transduction pathway in Yersinia enterocolitica. In non‐inducing conditions PspA and PspF were almost exclusively in the soluble fraction, consistent with them forming an inhibitory complex in the cytoplasm. However, upon induction PspA, but not PspF, mainly associated with the membrane fraction. This membrane association was dependent on PspBC but independent of increased PspA concentration. Analysis of psp null, overexpression and altered function mutants further supported a model where PspA is predominantly membrane associated only when the system is induced. Activation of the Psp system normally leads to a large increase in PspA concentration and we found that this provided a second mechanism for its membrane association, which did not require PspBC. These data suggest that basal PspFABC protein levels constitute a regulatory switch that moves some PspA to the membrane when an inducing trigger is encountered. Once this switch is activated PspA concentration increases, which might then allow it to directly contact the membrane for its physiological function.