Andrew J. Davies
Bangor University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew J. Davies.
Critical Care | 2014
Marianne Fitzgerald; Jonathan Millar; Bronagh Blackwood; Andrew J. Davies; Stephen J Brett; Daniel F. McAuley; James J. McNamee
Acute respiratory distress syndrome (ARDS) continues to have significant mortality and morbidity. The only intervention proven to reduce mortality is the use of lung-protective mechanical ventilation strategies, although such a strategy may lead to problematic hypercapnia. Extracorporeal carbon dioxide removal (ECCO2R) devices allow uncoupling of ventilation from oxygenation, thereby removing carbon dioxide and facilitating lower tidal volume ventilation. We performed a systematic review to assess efficacy, complication rates, and utility of ECCO2R devices. We included randomised controlled trials (RCTs), case–control studies and case series with 10 or more patients. We searched MEDLINE, Embase, LILACS (Literatura Latino Americana em Ciências da Saúde), and ISI Web of Science, in addition to grey literature and clinical trials registries. Data were independently extracted by two reviewers against predefined criteria and agreement was reached by consensus. Outcomes of interest included mortality, intensive care and hospital lengths of stay, respiratory parameters and complications. The review included 14 studies with 495 patients (two RCTs and 12 observational studies). Arteriovenous ECCO2R was used in seven studies, and venovenous ECCO2R in seven studies. Available evidence suggests no mortality benefit to ECCO2R, although post hoc analysis of data from the most recent RCT showed an improvement in ventilator-free days in more severe ARDS. Organ failure-free days or ICU stay have not been shown to decrease with ECCO2R. Carbon dioxide removal was widely demonstrated as feasible, facilitating the use of lower tidal volume ventilation. Complication rates varied greatly across the included studies, representing technological advances. There was a general paucity of high-quality data and significant variation in both practice and technology used among studies, which confounded analysis. ECCO2R is a rapidly evolving technology and is an efficacious treatment to enable protective lung ventilation. Evidence for a positive effect on mortality and other important clinical outcomes is lacking. Rapid technological advances have led to major changes in these devices and together with variation in study design have limited applicability of analysis. Further well-designed adequately powered RCTs are needed.
Ecology and Evolution | 2015
Louise B. Firth; Lisa M. Grant; Laura E. Bush; Andrew J. Davies; Mt Frost; Paula S. Moschella; Michael T. Burrows; Paul Cunningham; Stephen Dye; Stephen J. Hawkins
Biogenic reefs are important for habitat provision and coastal protection. Long-term datasets on the distribution and abundance of Sabellaria alveolata (L.) are available from Britain. The aim of this study was to combine historical records and contemporary data to (1) describe spatiotemporal variation in winter temperatures, (2) document short-term and long-term changes in the distribution and abundance of S. alveolata and discuss these changes in relation to extreme weather events and recent warming, and (3) assess the potential for artificial coastal defense structures to function as habitat for S. alveolata. A semi-quantitative abundance scale (ACFOR) was used to compare broadscale, long-term and interannual abundance of S. alveolata near its range edge in NW Britain. S. alveolata disappeared from the North Wales and Wirral coastlines where it had been abundant prior to the cold winter of 1962/1963. Population declines were also observed following the recent cold winters of 2009/2010 and 2010/2011. Extensive surveys in 2004 and 2012 revealed that S. alveolata had recolonized locations from which it had previously disappeared. Furthermore, it had increased in abundance at many locations, possibly in response to recent warming. S. alveolata was recorded on the majority of artificial coastal defense structures surveyed, suggesting that the proliferation of artificial coastal defense structures along this stretch of coastline may have enabled S. alveolata to spread across stretches of unsuitable natural habitat. Long-term and broadscale contextual monitoring is essential for monitoring responses of organisms to climate change. Historical data and gray literature can be invaluable sources of information. Our results support the theory that Lusitanian species are responding positively to climate warming but also that short-term extreme weather events can have potentially devastating widespread and lasting effects on organisms. Furthermore, the proliferation of coastal defense structures has implications for phylogeography, population genetics, and connectivity of coastal populations.
Coral Reefs | 2010
Lea-Anne Henry; Andrew J. Davies; J. Murray Roberts
Spatial heterogeneity in coral reef communities is well documented. This “species turnover” (beta diversity) on shallow warm-water reefs strongly conforms to spatial gradients in the environment as well as spatially autocorrelated biotic processes such as dispersal and competition. But the extent to which the environment and spatial autocorrelation create beta diversity on deep cold-water coral reefs such as those formed by Lophelia pertusa (Scleractinia) is unknown. The effects of remotely sensed and ground-truthed data were tested on the community composition of sessile suspension-feeding communities from the Mingulay Reef Complex, a landscape of inshore Lophelia reefs off the Scottish west coast. Canonical correspondence analysis determined that a statistically significant proportion (68%) of the variance in community composition could be explained by remotely sensed environmental variables (northerly and easterly aspect, seabed rugosity, depth), ground-truthed environmental variables (species richness and reef macrohabitat) and geospatial location. This variation was further partitioned into fractions explained by pure effects of the environment (51%), spatially structured environmental variables (12%) and spatial autocorrelation (5%). Beta diversity in these communities reflected the effects of both measured and unmeasured and spatially dependent environmental variables that vary across the reef complex, i.e., hydrography. Future work will quantify the significance and relative contributions of these variables in creating beta diversity in these rich communities.
Proceedings of the Royal Society of London. Series B, Biological Sciences | 2010
Frédéric Mineur; Andrew J. Davies; Christine A. Maggs; Marc Verlaque; Mark P. Johnson
Not all introduced (invasive) species in a region will spread from a single point of introduction. Long-distance dispersal or further introductions can obscure the pattern of spread, but the regional importance of such processes is difficult to gauge. These difficulties are further compounded when information on the multiple scale process of invasive species range expansion is reduced to one-dimensional estimates of spread (e.g. km yr−1). We therefore compared the results of two different metrics of range expansion: maximum linear rate of spread and accumulation of occupied grid squares (50 × 50 km) over time. An analysis of records for 54 species of introduced marine macrophytes in the Mediterranean and northeast Atlantic revealed cases where the invasion process was probably missed (e.g. Atlantic Bonnemaisonia hamifera) and suggested cases of secondary introductions or erratic jump dispersal (Dasysiphonia sp. and Womersleyella setacea). A majority of species analysed showed evidence for an accumulation of invaded sites without a clear invasion front. Estimates of spread rate are increasing for more recent introductions. The increase is greater than can be accounted for by temporally varying search effort and implies a historical increase in vector efficiency and/or a decreased resistance of native communities to invasion.
Invertebrate Reproduction & Development | 2014
Coleen C. Suckling; Melody S. Clark; Christine Beveridge; Lars Brunner; Adam D. Hughes; Elizabeth M. Harper; Elizabeth Cook; Andrew J. Davies; Lloyd S. Peck
Many studies into the responses of early life-stages to ocean acidification utilise offspring obtained from parents reared under present-day conditions. Their offspring are directly introduced to altered-pH conditions. This study determined whether this approach is suitable by pre-exposing parent sea urchins (Psammechinus miliaris) to altered seawater pH (~1000 μatm) for several durations, spawning them and rearing their offspring to settlement. Parents acclimated when exposed to low seawater pH for extended periods (>42 d). Longer adult pre-exposures reduced larval survival and less competent offspring were removed from populations earlier than in controls. Control offspring were larger during earlier development stages (2–7 d), but smaller during later development stages (14 + d) than offspring reared under low pH conditions. Juvenile settlement levels were similar across all treatments. After 17 d, offspring sourced from parents pre-exposed to low pH for 42 and 70 d were larger than those pre-exposed for 28 d and ambient sourced offspring directly transferred to low pH. These different responses show that the use of ambient derived offspring utilised in many studies is likely not an ideal approach when assessing larval development responses via morphometric measurements and survivorship prior to settlement. This study also suggests that calcifying organisms have capacities to acclimate and possibly adapt towards conditions beyond natural rates of ocean acidification.
PLOS ONE | 2014
John M. Guinotte; Andrew J. Davies
Regional scale habitat suitability models provide finer scale resolution and more focused predictions of where organisms may occur. Previous modelling approaches have focused primarily on local and/or global scales, while regional scale models have been relatively few. In this study, regional scale predictive habitat models are presented for deep-sea corals for the U.S. West Coast (California, Oregon and Washington). Model results are intended to aid in future research or mapping efforts and to assess potential coral habitat suitability both within and outside existing bottom trawl closures (i.e. Essential Fish Habitat (EFH)) and identify suitable habitat within U.S. National Marine Sanctuaries (NMS). Deep-sea coral habitat suitability was modelled at 500 m×500 m spatial resolution using a range of physical, chemical and environmental variables known or thought to influence the distribution of deep-sea corals. Using a spatial partitioning cross-validation approach, maximum entropy models identified slope, temperature, salinity and depth as important predictors for most deep-sea coral taxa. Large areas of highly suitable deep-sea coral habitat were predicted both within and outside of existing bottom trawl closures and NMS boundaries. Predicted habitat suitability over regional scales are not currently able to identify coral areas with pin point accuracy and probably overpredict actual coral distribution due to model limitations and unincorporated variables (i.e. data on distribution of hard substrate) that are known to limit their distribution. Predicted habitat results should be used in conjunction with multibeam bathymetry, geological mapping and other tools to guide future research efforts to areas with the highest probability of harboring deep-sea corals. Field validation of predicted habitat is needed to quantify model accuracy, particularly in areas that have not been sampled.
Journal of the Marine Biological Association of the United Kingdom | 2015
Chris Yesson; Laura E. Bush; Andrew J. Davies; Christine A. Maggs; Juliet Brodie
© Marine Biological Association of the United Kingdom 2015. Kelps, fucoids and other large brown seaweeds are common and important features of temperate coastal zones. The British Isles is a centre for seaweed diversity in the NE Atlantic, but, despite numerous surveys, an incomplete picture of the distribution remains. Survey data and herbarium specimens were used to examine the environmental preference of 15 species of large brown seaweeds, covering the orders Laminariales (kelps), Fucales (wracks) and one species of Tilopteridales. Habitat suitability models were developed to estimate broad-scale distribution and area of habitat created by these species around the British Isles. Topographic parameters were important factors limiting distributions. Generally, temperature did not appear to be a limiting factor, probably because the British Isles lies in the centre of the NE Atlantic distribution for most species, and not at climatic tolerance limits. However, for the recent migrant Laminaria ochroleuca, temperature was found to be important for the model, thus range expansion could continue northwards provided dispersal is possible. In contrast, the widespread Alaria esculenta showed a negative association with war mer summer temperatures. The total potential habitat around the British and Irish coastline is more than 19,000 km 2 for kelps and 11,000 km 2 for wracks, which represents a significant habitat area similar in scale to British broadleaf forest. We conclude that large brown algal species need to be managed and conserved in a manner that reflects their scale and importance.
European Journal of Phycology | 2018
Martyn Kurr; Andrew J. Davies
ABSTRACT The existence of sex-specific reproductive trade-offs is well established in plants. They usually occur because females invest more resources into reproduction than males, and have to compensate by sacrificing growth or defence. Investigations into by-sex differences in resource allocation by seaweeds are comparatively scarce. A small number of authors report differences between the sexes in some red algae, but known by-sex differences in brown algae are largely confined to the reproductive structures. In this study, sex-specific reproductive trade-offs are investigated in the common temperate brown alga Ascophyllum nodosum from three distinct populations. Quantified investments into growth, defence, and reproduction of a large number of individuals (n = 720) selected across a full annual cycle are presented in parallel with feeding trials using a common gastropod herbivore and a comprehensive assessment of the biotic and abiotic stressors impacting on A. nodosum at three sites. These reveal that sex-specific reproductive trade-offs occur in two of the three populations, as females invest more into reproduction than males and are subsequently less chemically defended for the months post gamete release. Feeding trials confirm that this leaves females more vulnerable to grazing pressure during these months, although mortality and competitive ability appear unaffected in the field. Possible causes of the trade-offs made by females are discussed, and new avenues of investigation are identified which could reveal interesting parallels between seaweeds and higher plants.
Coastal Risk Management in a Changing Climate | 2014
Simon Hoggart; Stephen J. Hawkins; Katrin Bohn; Laura Airoldi; Jim van Belzen; Amandine Bichot; David T. Bilton; Tjeerd J. Bouma; Marina Antonia Colangelo; Andrew J. Davies; Filippo Ferrario; Louise B. Firth; Cristina Galván; Michael E Hanley; Hugues Heurtefeux; Javier L. Lara; Iñigo Losada Rodriguez; María Isabel Zamanillo Sainz de la Maza; Bárbara Ondiviela Eizaguirre; Simon D. Rundle; Martin W. Skov; Elisabeth M. A. Strain; Anissia White; Liquan Zhang; Zhenchang Zhu; Richard C. Thompson
Natural coastal habitats play an important role in protecting coastal areas from sea water flooding caused by storm surge events. Many of these habitats, however, have been lost completely or degraded, reducing their ability to function as a natural flood defense. Once degraded, natural habitats can potently be destroyed by storm events, further threatening these systems. Much of the loss of coastal habitats is caused by increased human activity in coastal areas and through land claimed for urban, industrial, or agricultural use. As a result, some coastal habitats have become rare and threatened across much of Europe and the world. An associated problem is that of sea level rise, which has the combined impact of both increasing the risk of flooding in coastal ecosystems and increasing the severity of storm surge events. This chapter addresses two key topics: (1) the use of natural habitats as a form of coastal defense focusing on the required management and how to restore and/or create them and (2) ecological considerations in the design of hard coastal defense structures. The habitats that play a role in coastal deface and considered here are: (1) saltmarshes, (2) sand dunes, (3) seagrass meadows, and (4) biogenic reefs, including Sabellaria reefs, oyster beds, and mussel beds. As part of coastal habitat restoration and management, the process of saltmarsh creation, either through seaward extension or managed realignment is discussed focusing on potential benefits. Finally, key cumulative stressors that can hinder ecological approaches to coastal risk mitigation are reviewed.
Ecography | 2018
Eoghan A. Aston; Gareth J. Williams; J. A. Mattias Green; Andrew J. Davies; Lisa M. Wedding; Jamison M. Gove; Jean-Baptiste Jouffray; Timothy T. Jones; Jeanette Clark
Understanding and predicting patterns of spatial organization across ecological communities is central to the field of landscape ecology, and a similar line of inquiry has begun to evolve sub-tidal ...