Andrew J. Deans
St. Vincent's Institute of Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew J. Deans.
Nature Reviews Cancer | 2011
Andrew J. Deans; Stephen C. West
Interstrand crosslinks (ICLs) are highly toxic DNA lesions that prevent transcription and replication by inhibiting DNA strand separation. Agents that induce ICLs were one of the earliest, and are still the most widely used, forms of chemotherapeutic drug. Only recently, however, have we begun to understand how cells repair these lesions. Important insights have come from studies of individuals with Fanconi anaemia (FA), a rare genetic disorder that leads to ICL sensitivity. Understanding how the FA pathway links nucleases, helicases and other DNA-processing enzymes should lead to more targeted uses of ICL-inducing agents in cancer treatment and could provide novel insights into drug resistance.
Molecular Cell | 2008
Spencer J. Collis; Alberto Ciccia; Andrew J. Deans; Zuzana Hořejší; Julie Martin; Sarah L. Maslen; J. Mark Skehel; Stephen J. Elledge; Stephen C. West; Simon J. Boulton
The Fanconi anemia (FA) pathway is implicated in DNA repair and cancer predisposition. Central to this pathway is the FA core complex, which is targeted to chromatin by FANCM and FAAP24 following replication stress. Here we show that FANCM and FAAP24 interact with the checkpoint protein HCLK2 independently of the FA core complex. In addition to defects in FA pathway activation, downregulation of FANCM or FAAP24 also compromises ATR/Chk1-mediated checkpoint signaling, leading to defective Chk1, p53, and FANCE phosphorylation; 53BP1 focus formation; and Cdc25A degradation. As a result, FANCM and FAAP24 deficiency results in increased endogenous DNA damage and a failure to efficiently invoke cell-cycle checkpoint responses. Moreover, we find that the DNA translocase activity of FANCM, which is dispensable for FA pathway activation, is required for its role in ATR/Chk1 signaling. Our data suggest that DNA damage recognition and remodeling activities of FANCM and FAAP24 cooperate with ATR/Chk1 to promote efficient activation of DNA damage checkpoints.
Molecular Cell | 2009
Andrew J. Deans; Stephen C. West
Fanconi Anemia (FA) and Blooms Syndrome (BS) are genetic disorders characterized by overlapping phenotypes, including aberrant DNA repair and cancer predisposition. Here, we show that the FANCM gene product, FANCM protein, links FA and BS by acting as a protein anchor and bridge that targets key components of the FA and BS pathways to stalled replication forks, thus linking multiple components that are necessary for efficient DNA repair. Two highly conserved protein:protein interaction motifs in FANCM, designated MM1 and MM2, were identified. MM1 interacts with the FA core complex by binding to FANCF, whereas MM2 interacts with RM1 and topoisomerase IIIalpha, components of the BS complex. The MM1 and MM2 motifs were independently required to activate the FA and BS pathways. Moreover, a common phenotype of BS and FA cells-an elevated frequency of sister chromatid exchanges-was due to a loss of interaction of the two complexes through FANCM.
Annual review of biophysics | 2014
Helen Walden; Andrew J. Deans
Mutations in any of at least sixteen FANC genes (FANCA-Q) cause Fanconi anemia, a disorder characterized by sensitivity to DNA interstrand crosslinking agents. The clinical features of cytopenia, developmental defects, and tumor predisposition are similar in each group, suggesting that the gene products participate in a common pathway. The Fanconi anemia DNA repair pathway consists of an anchor complex that recognizes damage caused by interstrand crosslinks, a multisubunit ubiquitin ligase that monoubiquitinates two substrates, and several downstream repair proteins including nucleases and homologous recombination enzymes. We review progress in the use of structural and biochemical approaches to understanding how each FANC protein functions in this pathway.
Molecular Cell | 2015
Rebekka A. Schwab; Jadwiga Nieminuszczy; Fenil Shah; Jamie Langton; David Lopez Martinez; Chih-Chao Liang; Martin A. Cohn; Richard J. Gibbons; Andrew J. Deans; Wojciech Niedzwiedz
Summary DNA replication stress can cause chromosomal instability and tumor progression. One key pathway that counteracts replication stress and promotes faithful DNA replication consists of the Fanconi anemia (FA) proteins. However, how these proteins limit replication stress remains largely elusive. Here we show that conflicts between replication and transcription activate the FA pathway. Inhibition of transcription or enzymatic degradation of transcription-associated R-loops (DNA:RNA hybrids) suppresses replication fork arrest and DNA damage occurring in the absence of a functional FA pathway. Furthermore, we show that simple aldehydes, known to cause leukemia in FA-deficient mice, induce DNA:RNA hybrids in FA-depleted cells. Finally, we demonstrate that the molecular mechanism by which the FA pathway limits R-loop accumulation requires FANCM translocase activity. Failure to activate a response to physiologically occurring DNA:RNA hybrids may critically contribute to the heightened cancer predisposition and bone marrow failure of individuals with mutated FA proteins.
Cancer Research | 2006
Andrew J. Deans; Kum Kum Khanna; Carolyn J McNees; Ciro Mercurio; Jörg Heierhorst; Grant A. McArthur
Abnormal regulation of progression from G(1) to S phase of the cell cycle by altered activity of cyclin-dependent kinases (CDKs) is a hallmark of cancer. However, inhibition of CDKs, particularly CDK2, has not shown selective activity against most cancer cells because the kinase seems to be redundant in control of cell cycle progression. Here, we show a novel role in the DNA damage response and application of CDK inhibitors in checkpoint-deficient cells. CDK2(-/-) mouse fibroblasts and small interfering RNA--mediated or small-molecule--mediated CDK2 inhibition in MCF7 or U2OS cells lead to delayed damage signaling through Chk1, p53, and Rad51. This coincided with reduced DNA repair using the single-cell comet assay and defects observed in both homologous recombination and nonhomologous end-joining in cell-based assays. Furthermore, tumor cells lacking cancer predisposition genes BRCA1 or ATM are 2- to 4-fold more sensitive to CDK inhibitors. These data suggest that inhibitors of CDK2 can be applied to selectively enhance responses of cancer cells to DNA-damaging agents, such as cytotoxic chemotherapy and radiotherapy. Moreover, inhibitors of CDKs may be useful therapeutics in cancers with defects in DNA repair, such as mutations in the familial breast cancer gene BRCA1.
Molecular and Cellular Biology | 2002
Grant A. McArthur; Kevin P. Foley; Matthew L. Fero; Carl R. Walkley; Andrew J. Deans; James M. Roberts; Robert N. Eisenman
ABSTRACT To understand how cellular differentiation is coupled to withdrawal from the cell cycle, we have focused on two negative regulators of the cell cycle, the MYC antagonist MAD1 and the cyclin-dependent kinase inhibitor p27KIP1. Generation of Mad1/p27KIP1 double-null mice revealed a number of synthetic effects between the null alleles of Mad1 and p27KIP1, including embryonic lethality, increased proliferation, and impaired differentiation of granulocyte precursors. Furthermore, with granulocyte cell lines derived from the Mad1/p27KIP1 double-null mice, we observed constitutive Myc expression and cyclin E-CDK2 kinase activity as well as impaired differentiation following treatment with an inducer of differentiation. By contrast, similar treatment of granulocytes from Mad1 or p27KIP1 single-null mice resulted in differentiation accompanied by downregulation of both Myc expression and cyclin E-CDK2 kinase activity. In the double-null granulocytic cells, addition of a CDK2 inhibitor in the presence of differentiation inducer was sufficient to restore differentiation and reduce Myc levels. We conclude that Mad1 and p27KIP1 operate, at least in part, by distinct mechanisms to downregulate CDK2 activity and Myc expression in order to promote cell cycle exit during differentiation.
Cancer Cell | 2014
Dale W. Garsed; Owen J. Marshall; Vincent Corbin; Arthur L. Hsu; Leon Di Stefano; Jan Schröder; Jason Li; Zhi-Ping Feng; Bo W. Kim; Mark Kowarsky; Ben Lansdell; Ross Brookwell; Ola Myklebost; Leonardo A. Meza-Zepeda; Andrew J. Holloway; Florence Pedeutour; K.H. Andy Choo; Michael A. Damore; Andrew J. Deans; Anthony T. Papenfuss; David Thomas
We isolated and analyzed, at single-nucleotide resolution, cancer-associated neochromosomes from well- and/or dedifferentiated liposarcomas. Neochromosomes, which can exceed 600 Mb in size, initially arise as circular structures following chromothripsis involving chromosome 12. The core of the neochromosome is amplified, rearranged, and corroded through hundreds of breakage-fusion-bridge cycles. Under selective pressure, amplified oncogenes are overexpressed, while coamplified passenger genes may be silenced epigenetically. New material may be captured during punctuated chromothriptic events. Centromeric corrosion leads to crisis, which is resolved through neocentromere formation or native centromere capture. Finally, amplification terminates, and the neochromosome core is stabilized in linear form by telomere capture. This study investigates the dynamic mutational processes underlying the life history of a special form of cancer mutation.
Human Molecular Genetics | 2012
Andrew N. Blackford; Rebekka A. Schwab; Jadwiga Nieminuszczy; Andrew J. Deans; Stephen C. West; Wojciech Niedzwiedz
FANCM is the most highly conserved protein within the Fanconi anaemia (FA) tumour suppressor pathway. However, although FANCM contains a helicase domain with translocase activity, this is not required for its role in activating the FA pathway. Instead, we show here that FANCM translocaseactivity is essential for promoting replication fork stability. We demonstrate that cells expressing translocase-defective FANCM show altered global replication dynamics due to increased accumulation of stalled forks that subsequently degenerate into DNA double-strand breaks, leading to ATM activation, CTBP-interacting protein (CTIP)-dependent end resection and homologous recombination repair. Accordingly, abrogation of ATM or CTIP function in FANCM-deficient cells results in decreased cell survival. We also found that FANCM translocase activity protects cells from accumulating 53BP1-OPT domains, which mark lesions resulting from problems arising during replication. Taken together, these data show that FANCM plays an essential role in maintaining chromosomal integrity by promoting the recovery of stalled replication forks and hence preventing tumourigenesis.
Transgenic Research | 2002
Melissa A. Brown; Hans Nicolai; Kathy Howe; Toyomasa Katagiri; El-Nasir Lalani; Kaylene J. Simpson; N. W. Manning; Andrew J. Deans; Phil Chen; Kum Kum Khanna; Mas R. Wati; Beatrice Griffiths; Chun Fang Xu; Gordon Stamp; Ellen Solomon
To address the hypothesis that certain disease-associated mutants of the breast-ovarian cancer susceptibility gene BRCA1 have biological activity in vivo, we have expressed a truncated Brca1 protein (trBrca1) in cell-lines and in the mammary gland of transgenic mice. Immunofluorescent analysis of transfected cell-lines indicates that trBRCA1 is a stable protein and that it is localized in the cell cytoplasm. Functional analysis of these cell-lines indicates that expression of trBRCA1 confers an increased radiosensitivity phenotype on mammary epithelial cells, consistent with abrogation of the BRCA1 pathway. MMTV-trBrca1 transgenic mice from two independent lines displayed a delay in lactational mammary gland development, as demonstrated by altered histological profiles of lobuloalveolar structures. Cellular and molecular analyses indicate that this phenotype results from a defect in differentiation, rather than altered rates of proliferation or apoptosis. The results presented in this paper are consistent with trBrca1 possessing dominant-negative activity and playing an important role in regulating normal mammary development. They may also have implications for germline carriers of BRCA1 mutations.