Andrew J. Dorner
Takeda Pharmaceutical Company
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew J. Dorner.
Journal of Clinical Investigation | 1999
William L. Trepicchio; Maki Ozawa; Ian B. Walters; Toyoko Kikuchi; Patricia Gilleaudeau; Judith L. Bliss; Ullrich S. Schwertschlag; Andrew J. Dorner; James G. Krueger
Psoriasis is a chronic inflammatory skin disease in which epidermal hyperplasia results from skin infiltration by type I T lymphocytes and release of associated cytokines. A multifunctional cytokine, rhIL-11, modulates macrophage and type I T-lymphocyte function in cell culture and shows anti-inflammatory activity in animal models. We are testing subcutaneous delivery of rhIL-11 to patients with psoriasis in a phase 1 open-label dose-escalation clinical trial. Tissue was obtained from lesional and uninvolved skin before and during treatment with rhIL-11 and was examined by histology/immunohistochemistry and quantitative RT-PCR. Expression of over 35 genes was examined in all patients, and multiple genetic markers of psoriasis were identified. Expression of numerous proinflammatory genes was elevated in psoriatic tissue compared with nonlesional skin. Seven of 12 patients responded well to rhIL-11 treatment. Amelioration of disease by rhIL-11, as shown by reduced keratinocyte proliferation and cutaneous inflammation, was associated with decreased expression of products of disease-related genes, including K16, iNOS, IFN-gamma, IL-8, IL-12, TNF-alpha, IL-1beta, and CD8, and with increased expression of endogenous IL-11. We believe that this is the first study in humans to indicate that type I cytokines can be selectively suppressed by an exogenous immune-modifying therapy. The study highlights the utility of pharmacogenomic monitoring to track patient responsiveness and to elucidate anti-inflammatory mechanisms.
Pharmacogenomics Journal | 2001
J L Oestreicher; Ian B. Walters; Toyoko Kikuchi; Patricia Gilleaudeau; J Surette; Ullrich S. Schwertschlag; Andrew J. Dorner; James G. Krueger; William L. Trepicchio
Psoriasis is recognized as the most common T cell-mediated inflammatory disease in humans. Genetic linkage to as many as six distinct disease loci has been established but the molecular etiology and genetics remain unknown. To begin to identify psoriasis disease-related genes and construct in vivo pathways of the inflammatory process, a genome-wide expression screen of multiple psoriasis patients was undertaken. A comprehensive list of 159 genes that define psoriasis in molecular terms was generated; numerous genes in this set mapped to six different disease-associated loci. To further interpret the functional role of this gene set in the disease process, a longitudinal pharmacogenomic study was initiated to understand how expression levels of these transcripts are altered following patient treatment with therapeutic agents that antagonize calcineurin or NF-κB pathways. Transcript levels for a subset of these 159 genes changed significantly in those patients who responded to therapy and many of the changes preceded clinical improvement. The disease-related gene map provides new insights into the pathogenesis of psoriasis, wound healing and cellular-immune reactions occurring in human skin as well as other T cell-mediated autoimmune diseases. In addition, it provides a set of candidate genes that may serve as novel therapeutic intervention points as well as surrogate and predictive markers of treatment outcome.
Leukemia | 1999
Ullrich S. Schwertschlag; William L. Trepicchio; Kevin H. Dykstra; James C. Keith; Kj Turner; Andrew J. Dorner
Interleukin 11 (IL-11) is a pleiotropic cytokine with biological activities on many different cell types. Recombinant human IL-11 (rhIL-11) is produced by recombinant DNA technology in Escherichia coli. Both in vitro and in vivo, rhIL-11 has shown effects on multiple hematopoietic cell types. Its predominant in vivo hematopoietic activity is the stimulation of peripheral platelet counts in both normal and myelosuppressed animals. This activity is mediated through effects on both early and late progenitor cells to stimulate megakaryocyte differentiation and maturation. rhIL-11 has been approved for the treatment of chemotherapy-induced thrombocytopenia. The hematopoietic effects of rhIL-11 are most likely direct effects on progenitor cells and megakaryocytes in combination with other cytokines or growth factors. rhIL-11 also induces secretion of acute phase proteins (ferritin, haptoglobin, C-reactive protein, and fibrinogen) from the liver. The induction of heme oxidase and inhibition of several P450 oxidases have been reported from in vitro studies. In vivo, rhIL-11 treatment decreases sodium excretion by the kidney by an unknown mechanism and induces hemodilution. rhIL-11 also exhibits anti-inflammatory effects in a variety of animal models of acute and chronic inflammation, including inflammatory bowel disease, inflammatory skin disease, autoimmune joint disease, and various infection-endotoxemia syndromes. rhIL-11 has trophic effects on non-transformed intestinal epithelium under conditions of mucosal damage. The mechanism of the anti-inflammatory activity of rhIL-11 has been extensively studied. rhIL-11 directly affects macrophage and T cell effector function. rhIL-11 inhibits tumor necrosis factor-alpha (TNFα), interleukin 1β (IL-1β), interleukin 12 (IL-12), interleukin 6 (IL-6), and nitric oxide (NO) production from activated macrophages in vitro. The inhibition of cytokine production was associated with inhibition of nuclear translocation of the transcription factor, nuclear factor kappa B (NF-κB). The block to NF-κB nuclear translocation correlates with the ability of rhIL-11 to maintain or enhance production of the inhibitors of NF-κB, IκB-α and IκB-β. In addition to effects on macrophages, rhIL-11 also reduces CD4+ T cell production of Th1 cytokines, such as IFNγ induced by IL-12, while enhancing Th2 cytokine production. rhIL-11 also blocks IFNγ production in vivo. The molecular effects of rhIL-11 have also been studied in a clinical trial. Molecular analysis of skin biopsies of patients with psoriasis before and during rhIL-11 treatment demonstrates a decrease in mRNA levels of TNFα, IFNγ and iNOS. These activities suggest that in addition to its thrombopoietic clinical use, rhIL-11 may also be valuable in the treatment of inflammatory diseases. The clinical utility of the anti-inflammatory properties of rhIL-11 is being investigated in patients with Crohn’s disease, psoriasis and rheumatoid arthritis. These diseases are believed to be initiated and maintained by activated CD4+ Th1 cells in conjunction with activated macrophages.
Pharmacogenomics | 2006
Michael E. Burczynski; Andrew J. Dorner
Peripheral blood represents an attractive tissue source in clinical pharmacogenomic studies, given the feasibility of its collection from patients and its potential as a sentinel tissue to monitor perturbations of physiology in many disease states. The hypothesis is that the circulating blood cells monitor the physiological state of the organism and alter their transcriptome in response to this surveillance. However, the successful implementation of transcriptional profiling of peripheral blood cells in clinical trials represents a tremendous technical challenge for several reasons, including controlling the pre-analytical variables associated with sample processing and the interpretation of gene expression signatures generated from the complex mixture of cell types in blood. Multiple approaches for identifying transcriptomes in peripheral blood cells exist and each method is associated with significant advantages and disadvantages. Nonetheless, a growing number of studies are rapidly identifying transcriptional biomarkers in peripheral blood cells that may function as biomarkers of disease, evidence of pharmacodynamic effect, or even predictors of clinical outcomes and risk of toxicity. This review highlights the major approaches employed in global transcriptional profiling of peripheral blood cells and summarizes the available literature of initial studies in the growing field of hemogenomics. The overall purpose of the review is to focus on the development and application of technologies for the use of peripheral blood cells as a sentinel or surrogate tissue to measure disease state and drug response.
The Journal of Clinical Pharmacology | 2003
Lawrence J. Lesko; Ronald A Salerno; Brian B. Spear; Donald C. Anderson; Timothy Anderson; Celia Brazell; Jerry M. Collins; Andrew J. Dorner; David Essayan; Baltazar Gomez-Mancilla; Joseph L. Hackett; Shiew-Mei Huang; Susan Ide; Joanne M. Killinger; John K. Leighton; Elizabeth Mansfield; Robert J. Meyer; Stephen Ryan; Virginia D. Schmith; Peter Shaw; Frank D. Sistare; Mark Watson; Alexandra Worobec
The use of pharmacogenetics and pharmacogenomics in the drug development process, and in the assessment of such data submitted to regulatory agencies by industry, has generated significant enthusiasm as well as important reservations within the scientific and medical communities. This situation has arisen because of the increasing number of exploratory and confirmatory investigations into variations in RNA expression patterns and DNA sequences being conducted in the preclinical and clinical phases of drug development, and the uncertainty surrounding the acceptance of these data by regulatory agencies. This report summarizes the outcome of a workshop cosponsored by the Food and Drug Administration (FDA), the Pharmacogenetics Working Group (PWG), the Pharmaceutical Research and Manufacturers of America (PhRMA), and the PhRMA Preclinical Safety Committee (DruSafe). The specific aim of the workshop was to identify key issues associated with the application of pharmacogenetics and pharmacogenomics, including the feasibility of a regulatory “safe harbor” for exploratory genome‐based data, and to provide a forum for industry‐regulatory agency dialogue on these important issues.
PLOS ONE | 2011
Unnur S. Bjornsdottir; Stephen T. Holgate; Padmalatha S. Reddy; Andrew A Hill; Charlotte Marie McKee; Cristina Ileana Csimma; Amy A Weaver; Holly M. Legault; Clayton Small; Renee Ramsey; Debra K. Ellis; C. M. Burke; Philip J. Thompson; Peter H. Howarth; Andrew J. Wardlaw; Phillip G. Bardin; David I. Bernstein; Louis Irving; Geoffrey L. Chupp; George Bensch; Gregory W. Bensch; Jon E. Stahlman; Monroe Karetzky; James W. Baker; Rachel L. Miller; Brad H. Goodman; Donald G. Raible; Samuel J. Goldman; Douglas Miller; John Louis Ryan
Background Asthma exacerbations remain a major unmet clinical need. The difficulty in obtaining airway tissue and bronchoalveolar lavage samples during exacerbations has greatly hampered study of naturally occurring exacerbations. This study was conducted to determine if mRNA profiling of peripheral blood mononuclear cells (PBMCs) could provide information on the systemic molecular pathways involved during asthma exacerbations. Methodology/Principal Findings Over the course of one year, gene expression levels during stable asthma, exacerbation, and two weeks after an exacerbation were compared using oligonucleotide arrays. For each of 118 subjects who experienced at least one asthma exacerbation, the gene expression patterns in a sample of peripheral blood mononuclear cells collected during an exacerbation episode were compared to patterns observed in multiple samples from the same subject collected during quiescent asthma. Analysis of covariance identified genes whose levels of expression changed during exacerbations and returned to quiescent levels by two weeks. Heterogeneity among visits in expression profiles was examined using K-means clustering. Three distinct exacerbation-associated gene expression signatures were identified. One signature indicated that, even among patients without symptoms of respiratory infection, genes of innate immunity were activated. Antigen-independent T cell activation mediated by IL15 was also indicated by this signature. A second signature revealed strong evidence of lymphocyte activation through antigen receptors and subsequent downstream events of adaptive immunity. The number of genes identified in the third signature was too few to draw conclusions on the mechanisms driving those exacerbations. Conclusions/Significance This study has shown that analysis of PBMCs reveals systemic changes accompanying asthma exacerbation and has laid the foundation for future comparative studies using PBMCs.
Clinical Pharmacology & Therapeutics | 2005
Joseph Boni; Cathie Leister; Gregor Bender; Virginia Fitzpatrick; Natalie C. Twine; Jennifer Stover; Andrew J. Dorner; Fred Immermann; Michael E. Burczynski
Our objective was to estimate the pharmacokinetic parameters of CCI‐779 and its metabolite, sirolimus, and evaluate associations of exposure parameters with safety and clinical activity. Exposure parameters were also correlated with pharmacogenomic responses in peripheral blood mononuclear cells (PBMCs).
Journal of Interferon and Cytokine Research | 2001
Mary Bozza; Judith L. Bliss; Andrew J. Dorner; William L. Trepicchio
Recombinant human interleukin-11 (rHuIL-11) is a pleiotropic cytokine with effects on multiple cell types. rHuIL-11 reduces activated macrophage activity and downregulates production of proinflammatory mediators, such as tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO). In vitro and in vivo, rHuIL-11 inhibits production of key immunostimulatory cytokines, including IL-12 and interferon-gamma (IFN-gamma). rHuIL-11 has recently demonstrated immunomodulatory activity to downregulate IFN-gamma production, increase IL-4 production, and reduce inflammatory tissue injury in a human psoriasis clinical trial. The cellular mechanisms of these effects are not fully elucidated. We demonstrate here that expression of gp130 and IL-11 receptor (IL-11R) alpha mRNA, components of the IL-11R complex, are detected in human and murine CD4(+) and CD8(+) lymphocytes, suggesting that rHuIL-11 can directly interact with T cells. In a cell culture model of murine T cell differentiation, rHuIL-11 acts to inhibit IL-2 production as well as IL-12-induced IFN-gamma production and enhances IL-4 and IL-10 production. rHuIL-11 had no effect on T cell proliferation. The ability of rHuIL-11 to modulate cytokine production from activated CD4(+) T cells provides a mechanism through which rHuIL-11 may ameliorate such inflammatory diseases as psoriasis.
Molecular and Cellular Endocrinology | 2009
Kishore M. Lakshman; Shalender Bhasin; Christopher John Corcoran; Lisa A. Collins-Racie; Lioudmila Tchistiakova; S. Bradley Forlow; Katie St. Ledger; Michael E. Burczynski; Andrew J. Dorner; Edward R. Lavallie
UNLABELLEDnMethodological problems, including binding of myostatin to plasma proteins and cross-reactivity of assay reagents with other proteins, have confounded myostatin measurements. Here we describe development of an accurate assay for measuring myostatin concentrations in humans. Monoclonal antibodies that bind to distinct regions of myostatin served as capture and detector antibodies in a sandwich ELISA that used acid treatment to dissociate myostatin from binding proteins. Serum from myostatin-deficient Belgian Blue cattle was used as matrix and recombinant human myostatin as standard. The quantitative range was 0.15-37.50 ng/mL. Intra- and inter-assay CVs in low, mid, and high range were 4.1%, 4.7%, and 7.2%, and 3.9%, 1.6%, and 5.2%, respectively. Myostatin protein was undetectable in sera of Belgian Blue cattle and myostatin knockout mice. Recovery in spiked sera approximated 100%. ActRIIB-Fc or anti-myostatin antibody MYO-029 had no effect on myostatin measurements when assayed at pH 2.5. Myostatin levels were higher in young than older men (mean+/-S.E.M. 8.0+/-0.3 ng/mL vs. 7.0+/-0.4 ng/mL, P=0.03). In men treated with graded doses of testosterone, myostatin levels were significantly higher on day 56 than baseline in both young and older men; changes in myostatin levels were significantly correlated with changes in total and free testosterone in young men. Myostatin levels were not significantly associated with lean body mass in either young or older men.nnnCONCLUSIONnMyostatin ELISA has the characteristics of a valid assay: nearly 100% recovery, excellent precision, accuracy, and sufficient sensitivity to enable measurement of myostatin concentrations in men and women.
Pharmacogenomics | 2004
Gualberto Ruaño; Jerry M. Collins; Andrew J. Dorner; Sue-Jane Wang; Shiew-Mei Huang
Gualberto Ruano1,2, Jerry M Collins3, Andrew J Dorner4, Sue-Jane Wang5, Roberto Guerciolini6 & Shiew-Mei Huang†7 †Author for correspondence 1President, Genomas LLC, New Haven, CT, USA 2Department of Biochemistry and Molecular Biology, George Washington University, Washington DC, USA 3Director, Laboratory of Clinical Pharmacology, CDER, FDA, USA 4Senior Director, Molecular Medicine, Wyeth Research 5Lead Senior Mathematical Statistician, FDA, InterCenter Pharmacogenomics/ Pharmacogenetics Initiative, USA 6Senior Director, Millennium Pharmaceuticals, Inc., USA 7Deputy Office Director for Science, Office of Clinical Pharmacology and Biopharmaceutics, HFD-850, Center for Drug Evaluation and Research, FDA, 5600 Fishers Lane, PKLN 6A/19, Rockville, MD 20850, USA E-mail: huangs @cder.fda.gov
Collaboration
Dive into the Andrew J. Dorner's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputs