Andrew J. Hunt
Khon Kaen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew J. Hunt.
Journal of New Music Research | 2003
Andrew J. Hunt; Marcelo M. Wanderley; Matthew Paradis
This paper presents a review of a series of experiments which have contributed towards the understanding of the mapping layer in electronic instruments. It challenges the assumption that an electronic instrument consists solely of an interface and a sound generator. It emphasises the importance of the mapping between input parameters and sound parameters, and suggests that this can define the very essence of an instrument. The terms involved with mapping are defined, and existing literature reviewed and summarised. A model for understanding the design of such mapping strategies for electronic instruments is put forward, along with a roadmap of ongoing research focussing on the testing and evaluation of such mapping strategies.
Green Chemistry | 2006
James H. Clark; Vitaly Budarin; Fabien E. I. Deswarte; Jeffrey J. E. Hardy; Fran M. Kerton; Andrew J. Hunt; Rafael Luque; Duncan J. Macquarrie; Krzysztof Milkowski; Aitana Rodriguez; Owain Samuel; Stewart J. Tavener; Robin J. White; Ashley J. Wilson
Research into renewable bioresources at York and elsewhere is demonstrating that by applying green chemical technologies to the transformation of typically low value and widely available biomass feedstocks, including wastes, we can build up new environmentally compatible and sustainable chemicals and materials industries for the 21st century. Current research includes the benign extraction of valuable secondary metabolites from agricultural co-products and other low value biomass, the conversion of natures primary metabolites into speciality materials and into bioplatform molecules, as well as the green chemical transformations of those platform molecules. Key drivers for the adoption of biorefinery technologies will come from all stages in the chemical product lifecycle (reducing the use of non-renewable fossil resources, cleaner and safer chemical manufacturing, and legislative and consumer requirements for products), but also from the renewable energy industries (adding value to biofuels through the utilisation of the chemical value of by-products) and the food industries (realising the potential chemical value of wastes at all stages in the food product lifecycle).
Journal of the Acoustical Society of America | 2002
Nick Campbell; Andrew J. Hunt
In a speech synthesizer apparatus, a weighting coefficient training controller calculates acoustic distances in second acoustic feature parameters between one target phoneme from the same phoneme and the phoneme candidates other than the target phoneme based on first acoustic feature parameters and prosodic feature parameters, and determines weighting coefficient vectors for respective target phonemes defining degrees of contribution to the second acoustic feature parameters for respective phoneme candidates by executing a predetermined statistical analysis therefor. Then, a speech unit selector searches for a combination of phoneme candidates which correspond to a phoneme sequence of an input sentence and which minimizes a cost including a target cost representing approximate costs between a target phoneme and the phoneme candidates and a concatenation cost representing approximate costs between two phoneme candidates to be adjacently concatenated, and outputs index information on the searched out combination of phoneme candidates. Further, a speech synthesizer synthesizes a speech signal corresponding to the input phoneme sequence by sequentially reading out speech segments of speech waveform signals corresponding to the index information and concatenating the read speech segments of the speech waveform signals.
Chemistry: A European Journal | 2010
Babak Karimi; Dawood Elhamifar; James H. Clark; Andrew J. Hunt
The preparation of a novel palladium-supported periodic mesoporous organosilica based on alkylimidazolium ionic liquid (Pd@PMO-IL) in which imidazolium ionic liquid is uniformly distributed in the silica mesoporous framework is described. Both Pd@PMO-IL and the parent PMO-IL were characterized by N(2)-adsorption-desorption, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), TEM, and solid-state NMR spectroscopy. We have demonstrated that Pd@PMO-IL is an efficient and reusable catalyst for the Suzuki-Miyaura coupling reaction of various types of iodo-, bromo-, and even deactivated aryl chlorides in water. It was also found that although the PMO-IL nanostructure acts as reservoir for soluble Pd species, it can also operate as a nanoscaffold to recapture the Pd nanoparticles into the mesochannels thus preventing extensive agglomeration of Pd. This observation might be attributed to the isolated ionic liquid units that effectively control the reaction mechanism by preventing Pd agglomeration and releasing and recapturing Pd nanoparticles during the reaction process. The catalyst can be recovered and reused for at least four reaction cycles without significant loss of activity.
Organised Sound | 2002
Andrew J. Hunt; Marcelo M. Wanderley
This paper considers the issues involved in the design of electronic and computer interfaces, specifically mapping - the designed link between an instruments playing interface and its sound source. It defines the problem area, reviews the literature, and gives examples of specific system mappings. A general model is presented, with the aim of providing a framework for future discussions on what makes an effective mapping. Several guidelines for mapping strategies are given, based on existing work.
Energy and Environmental Science | 2011
Vitaly Budarin; Peter S. Shuttleworth; Jennifer R. Dodson; Andrew J. Hunt; Brigid Lanigan; Ray Marriott; Kris Milkowski; Ashley J. Wilson; Simon W. Breeden; Jiajun Fan; Emily H. K. Sin; James H. Clark
A new concept is demonstrated for an integrated close to zero waste wheat straw biorefinery combining two novel green technologies, CO2 extraction and low temperature microwave pyrolysis, to produce a variety of products, including energy and CO2 which can be internally recycled to sustain the processes. CO2 adds value to the process by extracting secondary metabolites including fatty acids, wax esters and fatty alcohols. Low temperature microwave pyrolysis (<200 °C) is shown to use less energy and produce higher quality oils and chars than conventional pyrolysis. The oils can be fractionated to produce either transport fuels or platform chemicals such as levoglucosan and levoglucosenone. The chars are appropriate for co-firing. The quality of the chars was improved by washing to remove the majority of the potassium and chlorine present, lowering their fouling potential. The economic feasibility of a wheat straw biorefinery is enhanced by intergrating these technologies.
IEEE MultiMedia | 2005
Thomas Hermann; Andrew J. Hunt
The research field of sonification, a subset of the topic of auditory display, has developed rapidly in recent decades. It brings together interests from the areas of data mining, exploratory data analysis, human-computer interfaces, and computer music. Sonification presents information by using sound (particularly nonspeech), so that the user of an auditory display obtains a deeper understanding of the data or processes under investigation by listening.
Chemistry: A European Journal | 2012
Babak Karimi; Dawood Elhamifar; Omolbanin Yari; Mojtaba Khorasani; Hojatollah Vali; James H. Clark; Andrew J. Hunt
The preparation and characterization of a set of periodic mesoporous organosilicas (PMOs) that contain different fractions of 1,3-bis(3-trimethoxysilylpropyl)imidazolium chloride (BTMSPI) groups uniformly distributed in the silica mesoporous framework is described. The mesoporous structure of the materials was characterized by powder X-ray diffraction, transmission electron microscopy, and N(2) adsorption-desorption analysis. The presence of propyl imidazolium groups in the silica framework of the materials was also characterized by solid-state NMR spectroscopy and diffuse-reflectance Fourier-transform infrared spectroscopy. The effect of the BTMSPI concentration in the initial solutions on the structural properties (including morphology) of the final materials was also examined. The total organic content of the PMOs was measured by elemental analysis, whereas their thermal stability was determined by thermogravimetric analysis. Among the described materials, it was found that PMO with 10% imidazolium content is an effective host for the immobilization of perruthenate through an ion-exchange protocol. The resulting Ru@PI-10 was then employed as a recyclable catalyst in the highly efficient aerobic oxidation of various types of alcohols.
RSC Advances | 2012
Helen L. Parker; Andrew J. Hunt; Vitaly Budarin; Peter S. Shuttleworth; Kathryn L. Miller; James H. Clark
The controlled pyrolysis of mesoporous polysaccharide-derived materials, from starch and alginic acid, formed carbonaceous materials (Starbons®) and were demonstrated as efficient materials for the removal of dyes from wastewater. The resulting materials were characterised by solid-state NMR, N2 adsorption porosimetry, FT-IR, scanning electron microscopy (SEM) and tunnelling electron microscopy (TEM). The material’s efficiency for dye adsorption was tested using methylene blue (MB) and acid blue 92 (AB) dyes. Adsorption data indicated that the mesoporosity of the material had a far greater influence on the adsorption capacity and speed of adsorption, than high surface area alone. Mesoporous Starbon® (A300) was evaluated against commercially available activated carbon (Norit) and demonstrated a superior adsorption capacity of MB; 186 mg g−1vs. 42 mg g−1. The kinetic activity of Starbon® was also determined with A800 showing the fastest rate of adsorption compared to S800 and Norit, suggesting that it is a more suitable material for water purification.
International Journal of Molecular Sciences | 2015
James H. Clark; Thomas J. Farmer; Andrew J. Hunt; James Sherwood
The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents.