Andrew J. Lewis
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew J. Lewis.
Nature Chemistry | 2014
Nickolas H. Anderson; Samuel O. Odoh; Yiyi Yao; Ursula J. Williams; Brian A. Schaefer; John J. Kiernicki; Andrew J. Lewis; Mitchell D. Goshert; Phillip E. Fanwick; Eric J. Schelter; Justin R. Walensky; Laura Gagliardi; Suzanne C. Bart
Classically, late transition-metal organometallic compounds promote multielectron processes solely through the change in oxidation state of the metal centre. In contrast, uranium typically undergoes single-electron chemistry. However, using redox-active ligands can engage multielectron reactivity at this metal in analogy to transition metals. Here we show that a redox-flexible pyridine(diimine) ligand can stabilize a series of highly reduced uranium coordination complexes by storing one, two or three electrons in the ligand. These species reduce organoazides easily to form uranium-nitrogen multiple bonds with the release of dinitrogen. The extent of ligand reduction dictates the formation of uranium mono-, bis- and tris(imido) products. Spectroscopic and structural characterization of these compounds supports the idea that electrons are stored in the ligand framework and used in subsequent reactivity. Computational analyses of the uranium imido products probed their molecular and electronic structures, which facilitated a comparison between the bonding in the tris(imido) structure and its tris(oxo) analogue.
Inorganic Chemistry | 2013
Justin A. Bogart; Andrew J. Lewis; Scott Medling; Nicholas A. Piro; Patrick J. Carroll; Corwin H. Booth; Eric J. Schelter
Electrochemical experiments performed on the complex Ce(IV)[2-((t)BuNO)py]4, where [2-((t)BuNO)py](-) = N-tert-butyl-N-2-pyridylnitroxide, indicate a 2.51 V stabilization of the 4+ oxidation state of Ce compared to [(n)Bu4N]2[Ce(NO3)6] in acetonitrile and a 2.95 V stabilization compared to the standard potential for the ion under aqueous conditions. Density functional theory calculations suggest that this preference for the higher oxidation state is a result of the tetrakis(nitroxide) ligand framework at the Ce cation, which allows for effective electron donation into, and partial covalent overlap with, vacant 4f orbitals with δ symmetry. The results speak to the behavior of CeO2 and related solid solutions in oxygen uptake and transport applications, in particular an inherent local character of bonding that stabilizes the 4+ oxidation state. The results indicate a cerium(IV) complex that has been stabilized to an unprecedented degree through tuning of its ligand-field environment.
Journal of the American Chemical Society | 2013
Andrew J. Lewis; Patrick J. Carroll; Eric J. Schelter
Thermally stable uranium(VI)-methyl and -acetylide complexes: U(VI)OR[N(SiMe3)2]3 R = -CH3, -C≡CPh were prepared in which coordination of the hydrocarbyl group is directed trans to the uranium-oxo multiple bond. The stability of the uranium-carbon bond is attributed to an inverse trans influence. The hydrocarbyl complexes show greater ITI stabilization than that of structurally related U(VI)OX[N(SiMe3)2]3 (X = F(-), Cl(-), Br(-)) complexes, demonstrated both experimentally and computationally. An inverse trans influence ligand series is presented, developed from a union of theoretical and experimental results and based on correlations between the extent of cis-destabilization, the complexes stabilities toward electrochemical reduction, the thermodynamic driving forces for U═O bond formation, and the calculated destabilization of axial σ* and π* antibonding interactions.
Inorganic Chemistry | 2013
Ursula J. Williams; Brian D. Mahoney; Andrew J. Lewis; Patrick T. DeGregorio; Patrick J. Carroll; Eric J. Schelter
Trivalent and tetravalent cerium compounds of the octamethyltetraazaannulene (H2omtaa) ligand have been synthesized. Electrochemical analysis shows a strong thermodynamic preference for the formal cerium(IV) oxidation state. Oxidation of the cerium(III) congener Ce(Homtaa)(omtaa) occurs by hydrogen-atom transfer that includes a single crystal to single crystal transformation upon exposure to an ambient atmosphere.
Inorganic Chemistry | 2013
Andrew J. Lewis; Ursula J. Williams; Patrick J. Carroll; Eric J. Schelter
The synthesis of the sterically saturated uranium(IV) complex U[N(SiMe3)2]4 (1) is demonstrated from the one-electron oxidation of U[N(SiMe3)2]3 with a variety of oxidants in THF. A high yielding synthesis of 1 directly from UI3(THF)4 is provided.
Inorganic Chemistry | 2014
Andrew J. Lewis; Kimberly C. Mullane; Eiko Nakamaru-Ogiso; Patrick J. Carroll; Eric J. Schelter
Systematic ligand variation in a structurally conserved framework of pentavalent uranium complexes of the formulas U(V)X2[N(SiMe3)2]3 (X = F, Cl, Br, N3, NCS, 2-naphthoxide) and U(V)OX[N(SiMe3)2]3(-) (X = -CCPh, -CN) allowed an investigation into the role of the inverse trans influence in pentavalent uranium complexes. The -CCPh and -CN derivatives were only stable in the presence of the trans-U═O multiple bond, implicating the inverse trans influence in stabilizing these complexes. Spectroscopic, structural, and density functional theory calculated electronic structural data are explored. Near-IR data of all complexes is presented, displaying vibronic coupling of 5f(1) electronic transitions along the primary axis. Electrochemical characterization allowed assessment of the relative donating ability of the various axial ligands in this framework. Electron paramagnetic resonance data presented display axial spectra, with hyperfine coupling along the primary axis.
Journal of the American Chemical Society | 2013
Andrew J. Lewis; Patrick J. Carroll; Eric J. Schelter
Uranium terminal mono-oxo complexes are prepared with a unique activation of nitrite following reductive cleavage of an N-O bond with loss of nitric oxide. The thermodynamic driving force of U═O bond formation differentiates this reactivity from known mechanisms of nitrite reduction, which are typically mediated by proton transfer. Mechanistic details are explored by DFT supporting a simple homolytic cleavage pathway from a κ(1)-ONO bound intermediate. Complexes of the formula U(VI)OX[N(SiMe(3))(2)](3) are formed providing a trigonal bipyramidal framework into which ligands trans to the U═O bond may be installed.
Inorganic Chemistry | 2014
Kimberly C. Mullane; Andrew J. Lewis; Haolin Yin; Patrick J. Carroll; Eric J. Schelter
Novel reaction pathways are illustrated in the synthesis of uranium(IV), uranium(V), and uranium(VI) monoimido complexes. In contrast to the straightforward preparation of U(V)(═NSiMe3)[N(SiMe3)2]3 (1), the synthesis of a uranium(V) tritylimido complex, U(V)(═NCPh3)[N(SiMe3)2]3 (4), from U(III)[N(SiMe3)2]3 and Ph3CN3 was found to proceed through multiple one-electron steps. Whereas the oxidation of 1 with copper(II) salts produced the uranium(VI) monoimido complexes U(VI)(═NSiMe3)X[N(SiMe3)2]3 (X = Cl, Br), the reaction of 4 with CuBr2 undergoes sterically induced reduction to form the uranium(VI) monoimido complex U(VI)(═NCPh3)Br2[N(SiMe3)2]2, demonstrating a striking difference in reactivity based on imido substituent. The facile reduction of compounds 1 and 4 with KC8 allowed for the synthesis of the uranium(IV) monoimido derivatives, K[U(IV)(═NSiMe3)[N(SiMe3)2]3] (1-K) and K[U(IV)(═NCPh3)[N(SiMe3)2]3] (4-K), respectively. In contrast, an analogous uranium(IV) monoimido complex, K[U(IV)(═NPh(F))[N(SiMe3)Ph(F)]], Ph(F) = -pentafluorophenyl (6), was prepared through a loss of N(SiMe3)2Ph(F) concomitant with one-electron oxidation of a uranium(III) center. The uranium(IV) monoimido complexes were found to be reactive toward electrophiles, demonstrating N-C and N-Si single bond formation. One-electron reduction of nitrite provided a route to the uranium(VI) oxo/imido complex, [Ph4P][U(VI)O(═NSiMe3)[N(SiMe3)2]3]. The energetics and electrochemical processes involved in the various oxidation reactions are discussed. Finally, comparison of the U(VI)(═NSiMe3)X[N(SiMe3)2]3, X = Cl, Br, complexes with the previously reported U(VI)OX[N(SiMe3)2]3, X = Cl, Br, complexes suggested that the donor strength of the trimethylsilylimido ligand is comparable to the oxo ligand.
Journal of the American Chemical Society | 2015
Nickolas H. Anderson; Samuel O. Odoh; Ursula J. Williams; Andrew J. Lewis; Gregory L. Wagner; Juan S. Lezama Pacheco; Stosh A. Kozimor; Laura Gagliardi; Eric J. Schelter; Suzanne C. Bart
The electronic structures of a series of highly reduced uranium complexes bearing the redox-active pyridine(diimine) ligand, (Mes)PDI(Me) ((Mes)PDI(Me) = 2,6-(2,4,6-Me3-C6H2-N═CMe)2C5H3N) have been investigated. The complexes, ((Mes)PDI(Me))UI3(THF) (1), ((Mes)PDI(Me))UI2(THF)2 (2), [((Mes)PDI(Me))UI]2 (3), and [((Mes)PDI(Me))U(THF)]2 (4), were examined using electronic and X-ray absorption spectroscopies, magnetometry, and computational analyses. Taken together, these studies suggest that all members of the series contain uranium(IV) centers with 5f (2) configurations and reduced ligand frameworks, specifically [(Mes)PDI(Me)](•/-), [(Mes)PDI(Me)](2-), [(Mes)PDI(Me)](3-) and [(Mes)PDI(Me)](4-), respectively. In the cases of 2, 3, and 4 no unpaired spin density was found on the ligands, indicating a singlet diradical ligand in monomeric 2 and ligand electron spin-pairing through dimerization in 3 and 4. Interaction energies, representing enthalpies of dimerization, of -116.0 and -144.4 kcal mol(-1) were calculated using DFT for the monomers of 3 and 4, respectively, showing there is a large stabilization gained by dimerization through uranium-arene bonds. Highlighted in these studies is compound 4, bearing a previously unobserved pyridine(diimine) tetraanion, that was uniquely stabilized by backbonding between uranium cations and the η(5)-pyridyl ring.
Chemical Science | 2013
Haolin Yin; Andrew J. Lewis; Ursula J. Williams; Patrick J. Carroll; Eric J. Schelter
The fluorinated diarylamines HNPhPhF, HNPhF2, HNPhArF, PhF = 2,3,4,5,6-pentafluorophenyl, ArF = 3,5-bis(trifluoromethyl)phenyl, are used to prepare complexes of uranium(III, IV) ions. Despite being electron-poor amines with little steric bulk, their coordinated amide ligands exhibit direct control over the coordination environment through a subtle, cooperative interplay of multiple labile F→U dative interactions and favorable arene–arene interactions. The C–F→U interactions, ∼8.9 kcal mol−1 as determined by variable temperature NMR experiments, persist in solution and allow the isolation of otherwise unstable species as well as the first pseudo-square planar uranium complex.