Andrew J. Lindsay
University College Cork
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew J. Lindsay.
Journal of Cell Biology | 2008
Patrick T. Caswell; May Chan; Andrew J. Lindsay; Mary W. McCaffrey; David Boettiger; Jim C. Norman
Here we show that blocking the adhesive function of αvβ3 integrin with soluble RGD ligands, such as osteopontin or cilengitide, promoted association of Rab-coupling protein (RCP) with α5β1 integrin and drove RCP-dependent recycling of α5β1 to the plasma membrane and its mobilization to dynamic ruffling protrusions at the cell front. These RCP-driven changes in α5β1 trafficking led to acquisition of rapid/random movement on two-dimensional substrates and to a marked increase in fibronectin-dependent migration of tumor cells into three-dimensional matrices. Recycling of α5β1 integrin did not affect its regulation or ability to form adhesive bonds with substrate fibronectin. Instead, α5β1 controlled the association of EGFR1 with RCP to promote the coordinate recycling of these two receptors. This modified signaling downstream of EGFR1 to increase its autophosphorylation and activation of the proinvasive kinase PKB/Akt. We conclude that RCP provides a scaffold that promotes the physical association and coordinate trafficking of α5β1 and EGFR1 and that this drives migration of tumor cells into three-dimensional matrices.
Journal of Biological Chemistry | 2002
Andrew J. Lindsay; Alan G. Hendrick; Giuseppina Cantalupo; Francesca Senic-Matuglia; Bruno Goud; Cecilia Bucci; Mary W. McCaffrey
Rab4 and Rab11 are small GTPases belonging to the Ras superfamily. They both function as regulators along the receptor recycling pathway. We have identified a novel 80-kDa protein that interacts specifically with the GTP-bound conformation of Rab4, and subsequent work has shown that it also interacts strongly with Rab11. We name this protein Rab coupling protein (RCP). RCP is predominantly membrane-bound and is expressed in all cell lines and tissues tested. It colocalizes with early endosomal markers including Rab4 and Rab11 as well as with the transferrin receptor. Overexpression of the carboxyl-terminal region of RCP, which contains the Rab4- and Rab11-interacting domain, results in a dramatic tubulation of the transferrin compartment. Furthermore, expression of this mutant causes a significant reduction in endosomal recycling without affecting ligand uptake or degradation in quantitative assays. RCP is a homologue of Rip11 and therefore belongs to the recently described Rab11-FIP family.
Physical Review B | 2011
Muhammad Usman; Christopher A. Broderick; Andrew J. Lindsay; Eoin P. O’Reilly
We develop an atomistic, nearest-neighbor sp3s* tight-binding Hamiltonian to investigate the electronic structure of dilute bismide alloys of GaP and GaAs. Using this model we calculate that the incorporation of dilute concentrations of Bi in GaP introduces Bi-related defect states in the band gap, which interact with the host matrix valence band edge via a Bi composition dependent band anti-crossing (BAC) interaction. By extending this analysis to GaBiAs we demonstrate that the observed strong variation of the band gap Eg and spin-orbit-splitting (SO) energy with Bi composition can be well explained in terms of a BAC interaction between the extended states of the GaAs valence band edge and highly localized Bi-related defect states lying in the valence band, with the change in Eg also having a significant contribution from a conventional alloy reduction in the conduction band edge energy. Our calculated values of Eg and SO are in good agreement with experiment throughout the investigated composition range x less than 13%. In particular, our calculations reproduce the experimentally observed crossover to an Eg < SO regime at approximately 10.5% Bi composition in bulk GaBiAs. Recent x-ray spectroscopy measurements have indicated the presence of Bi pairs and clusters even for Bi compositions as low as 2%. We include a systematic study of different Bi nearest-neighbor environments in the alloy to achieve a quantitative understanding of the effect of Bi pairing and clustering on the GaBiAs electronic structure.
Biochemical and Biophysical Research Communications | 2002
Deborah M. Wallace; Andrew J. Lindsay; Alan G. Hendrick; Mary W. McCaffrey
We have recently identified Rab11-FIP4 as the sixth member of the Rab11-FIP family of Rab11 interacting proteins. Here, we demonstrate that Rab11-FIP4 interacts with Rab11 in a GTP-dependent manner and that its C-terminal region allows the protein to self-interact and interact with pp75/Rip11, Rab11-FIP2, and Rab11-FIP3. However, Rab11-FIP4 does not appear to interact directly with Rab coupling protein (RCP). We investigated the subcellular localisation of Rab11-FIP4 in HeLa cells and show that it colocalises extensively with transferrin and with Rab11. Furthermore, when overexpressed, it causes a condensation of the Rab11 compartment in the perinuclear region. We demonstrate that the carboxy-terminal region of Rab11-FIP4 (Rab11-FIP4(C-ter)) is necessary and sufficient for its endosomal membrane association. Expression of Rab11-FIP4(C-ter) causes a dispersal of the Rab11 compartment towards the cell periphery and does not inhibit transferrin recycling in HeLa cells. It is likely that Rab11-FIP4 serves as a Rab11 effector in a Rab11 mediated function other than transferrin recycling.
Molecular Biology of the Cell | 2013
Andrew J. Lindsay; Florence Jollivet; Conor P. Horgan; Amir R. Khan; Graça Raposo; Mary W. McCaffrey; Bruno Goud
A systematic screen of the entire human Rab GTPase family for interactions with myosin Va identified 10 novel Rab partners for myosin Va, all of which belong to the endocytic recycling and post-Golgi secretory membrane network. However, Rab10 and Rab11 appear to be the major determinants of its recruitment to intracellular membranes.
Traffic | 2004
María T. Damiani; Martín Pavarotti; Natalia Leiva; Andrew J. Lindsay; Mary W. McCaffrey; María I. Colombo
The Rab coupling protein (RCP) is a recently identified novel protein that belongs to the Rab11‐FIP family. RCP interacts specifically with Rab4 and Rab11, small guanosine‐5′‐triphosphatases that function as regulators along the endosomal recycling pathway. We used fluorescence confocal microscopy and biochemical approaches to evaluate the participation of RCP during particle uptake and phagosome maturation. In macrophages, RCP is predominantly membrane‐bound and displays a punctuate vesicular pattern throughout the cytoplasm. RCP is mainly associated with transferrin‐containing structures and Rab11‐labeled endosomes. Overexpression of H13, the carboxyl‐terminal region of RCP that contains the Rab binding domain, results in an abnormal endosomal compartment. Interestingly, we found that RCP is associated as discrete patches or protein domains to early phagosomal membranes. In macrophages, overexpression of full‐length RCP stimulates recycling from the phagosomal compartment, whereas overexpression of H13 diminishes this vesicular transport step. It is likely that acting as an intermediate between Rab4 and Rab11, RCP regulates membrane flux along the phagocytic pathway via recycling events.
Journal of Cell Science | 2007
Gavin I. Welsh; Sophie E Leney; Bethan Lloyd-Lewis; Matthew Wherlock; Andrew J. Lindsay; Mary W. McCaffrey; Jeremy M. Tavaré
The translocation of GLUT4 to the plasma membrane underlies the ability of insulin to stimulate glucose uptake, an event that involves the activation of protein kinase B, several members of the Rab family of GTP-binding proteins and the phosphorylation of the Rab GTPase-activating protein AS160. Here, we explored the regulation by insulin of the class I Rab11-interacting proteins Rip11, RCP and FIP2. We show that Rip11, but not RCP or FIP2, translocates to the plasma membrane of 3T3-L1 adipocytes in response to insulin. This unique response of Rip11 prompted us to explore the role of this protein in more detail. We found that Rip11 partially colocalises with GLUT4 in intracellular compartments. siRNA-mediated knockdown of Rip11 inhibits insulin-stimulated uptake of 2-deoxyglucose, and overexpression of Rip11 blocks insulin-stimulated insertion of translocated GLUT4 vesicles into the plasma membrane. We additionally show that Rip11 forms a complex with AS160 in a Rab11-independent manner and that insulin induces dissociation of AS160 from Rip11. We propose that Rip11 is an AS160- and Rab-binding protein that coordinates the protein kinase signalling and trafficking machinery required to stimulate glucose uptake in response to insulin.
Cytoskeleton | 2009
Andrew J. Lindsay; Mary W. McCaffrey
It is becoming increasingly clear that the mammalian class V myosins are involved in a wide range of cellular processes such as receptor trafficking, mRNA transport, myelination in oligodendrocytes and cell division. Using paralog-specific antibodies, we observed significant nuclear localisation for both myosin Va and myosin Vb. Myosin Vb was present in nucleoli where it co-localises with RNA polymerase I, and newly synthesised ribosomal RNA (rRNA), indicating that it may play a role in transcription. Indeed, its nucleolar pattern was altered upon treatment with RNA polymerase I inhibitors. In contrast, myosin Va is largely excluded from nucleoli and is unaffected by these inhibitors. Myosin Vb was also found to physically associate with RNA polymerase I and actin in co-immunoprecipitation experiments. We propose that myosin Vb serves a role in rRNA transcription.
Journal of Physics: Condensed Matter | 2004
Eoin P. O’Reilly; Andrew J. Lindsay; S. Fahy
We use an sp3s* tight-binding Hamiltonian to investigate the band-anti-crossing (BAC) model for dilute GaNxAs1−x alloys. The BAC model describes the strong band-gap bowing at low N composition x in terms of an interaction between the conduction band edge (E−) and a higher-lying band of localized nitrogen resonant states (E+). We demonstrate that the E− level can be described very accurately by the BAC model, in which we treat the nitrogen levels explicitly using a linear combination of isolated nitrogen resonant states (LCINS). We also use the LCINS results to identify E+ in the full tight-binding calculations, showing that at low N composition E+ forms a sharp resonance in the conduction band Γ-related density of states, which broadens rapidly at higher N composition when the E+ level rises in energy to become degenerate with the larger L-related density of states. We then turn to the conduction band dispersion, showing that the two-level BAC model must be modified to give a quantitative understanding of the dispersion. We demonstrate that the unexpectedly large electron effective mass values observed in some GaNAs samples are due to hybridization between the conduction band edge and nitrogen states close to the band edge. Finally we show that there is a fundamental connection between the strong composition-dependence of the conduction-band-edge energy and the n-type carrier scattering cross-section in Ga(In)NxAs1−x alloys, imposing general limits on the carrier mobility, comparable to the highest measured mobility in such alloys.
FEBS Letters | 2004
Andrew J. Lindsay; Mary W. McCaffrey
Rab coupling protein (RCP) is a member of the Rab11‐family of interacting proteins (Rab11‐FIPs). Family members are characterised by their ability to interact with Rab11. This property is mediated by a conserved Rab binding domain (RBD) located at their carboxy‐termini. Several Rab11‐FIPs can also interact with other small GTPases. RCP interacts with Rab4 in addition to Rab11. To dissect out the individual properties of the Rab4 and Rab11 interactions with RCP, conserved amino acids within the RBD of RCP were mutated by site‐directed mutagenesis. The effect of these mutations on Rab4 and Rab11 binding, and the intracellular localisation of RCP, was examined. Our results indicate that Rab11, rather than Rab4, mediates the intracellular localisation of RCP, and that the class I Rab11‐FIPs compete for binding to Rab11.