Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew J. Lowe is active.

Publication


Featured researches published by Andrew J. Lowe.


Trends in Ecology and Evolution | 2009

Something in the way you move: dispersal pathways affect invasion success

John R. U. Wilson; Eleanor E. Dormontt; Peter J. Prentis; Andrew J. Lowe

Biological invasions are caused by human-mediated extra-range dispersal and, unlike natural extra-range dispersal, are often the result of multiple introductions from multiple sources to multiple locations. The processes and opportunities that result in propagules moving from one area to another can be used more broadly to differentiate all types of extra-range dispersal. By examining key properties of dispersal pathways (notably propagule pressure, genetic diversity and the potential for simultaneous movement of coevolved species), the establishment and evolutionary trajectories of extra-range dispersal can be better understood. Moreover, elucidation of the mechanistic properties of dispersal pathways is crucial for scientists and managers who wish to assist, minimise or prevent future movements of organisms.


Forest Ecology and Management | 2002

Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence

Rémy J. Petit; Simon Brewer; Sándor Bordács; Kornel Burg; Rachid Cheddadi; Els Coart; Joan Cottrell; Ulrike M. Csaikl; Barbara van Dam; John D Deans; Santiago Espinel; Silvia Fineschi; Reiner Finkeldey; Izabela Glaz; Pablo G. Goicoechea; Jan S. Jensen; Armin O. König; Andrew J. Lowe; Søren Flemming Madsen; Gabor Mátyás; Robert Munro; Flaviu Popescu; Danko Slade; Helen Tabbener; Sven G.M de Vries; Birgit Ziegenhagen; Jacques-Louis de Beaulieu; Antoine Kremer

Abstract The geographic distribution throughout Europe of each of 32 chloroplast DNA variants belonging to eight white oak species sampled from 2613 populations is presented. Clear-cut geographic patterns were revealed by the survey. These distributions, together with the available palynological information, were used to infer colonisation routes out of the glacial period refugia. In western Europe in particular, movements out of the Iberian and the Italian Peninsulas can be clearly identified. Separate refugia are also present in eastern Balkans, whereas further west in this peninsula similarities with Italy were evident. Movements resulting in the exchange of haplotypes between refugia both during the present interglacial and probably also during earlier glacial cycles were therefore inferred. The consequences of these past exchanges is that phylogenetically divergent haplotypes have sometimes followed very similar colonisation routes, limiting somewhat the phylogeographic structure. Cases of geographic disjunction in the present-day distribution of haplotypes are also apparent and could have been induced by the existence of rapid climatic changes at the end of the glacial period (specifically the Younger Dryas cold period), which resulted in range restriction following an early warm period during which oak first expanded from its primary refugia. This cold phase was followed by a new period of expansion at the outset of the Holocene, involving in some cases ‘secondary’ refugia. It is expected that these short climate oscillations would have led to a partial reshuffling of haplotype distribution. Early association between haplotypes and oak species are also suggested by the data, although extensive introgression among species has ultimately largely blurred the pattern. This implies that colonisation routes may have been initially constrained by the ecological characteristics of the species hosting each chloroplast variant. We suggest for instance that two oak species distributed in the north of the Iberian Peninsula ( Quercus petraea and Q. pubescens ) are recent post-glacial immigrants there. When considered together, conclusions on the location of glacial period refugia and the colonisation routes derived from molecular information and fossil pollen data appear to be both largely compatible and complementary.


Trends in Plant Science | 2008

Adaptive evolution in invasive species

Peter J. Prentis; John R. U. Wilson; Eleanor E. Dormontt; Andrew J. Lowe

Many emerging invasive species display evidence of rapid adaptation. Contemporary genetic studies demonstrate that adaptation to novel environments can occur within 20 generations or less, indicating that evolutionary processes can influence invasiveness. However, the source of genetic or epigenetic variation underlying these changes remains uncharacterised. Here, we review the potential for rapid adaptation from standing genetic variation and from new mutations, and examine four types of evolutionary change that might promote or constrain rapid adaptation during the invasion process. Understanding the source of variation that contributes to adaptive evolution in invasive plants is important for predicting future invasion scenarios, identifying candidate genes involved in invasiveness, and, more generally, for understanding how populations can evolve rapidly in response to novel and changing environments.


Heredity | 2005

Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees

Andrew J. Lowe; David Boshier; M Ward; Cecile F. E. Bacles; Carlos Navarro

The theoretical impacts of anthropogenic habitat degradation on genetic resources have been well articulated. Here we use a simulation approach to assess the magnitude of expected genetic change, and review 31 studies of 23 neotropical tree species to assess whether empirical case studies conform to theory. Major differences in the sensitivity of measures to detect the genetic health of degraded populations were obvious. Most studies employing genetic diversity (nine out of 13) found no significant consequences, yet most that assessed progeny inbreeding (six out of eight), reproductive output (seven out of 10) and fitness (all six) highlighted significant impacts. These observations are in line with theory, where inbreeding is observed immediately following impact, but genetic diversity is lost slowly over subsequent generations, which for trees may take decades. Studies also highlight the ecological, not just genetic, consequences of habitat degradation that can cause reduced seed set and progeny fitness. Unexpectedly, two studies examining pollen flow using paternity analysis highlight an extensive network of gene flow at smaller spatial scales (less than 10 km). Gene flow can thus mitigate against loss of genetic diversity and assist in long-term population viability, even in degraded landscapes. Unfortunately, the surveyed studies were too few and heterogeneous to examine concepts of population size thresholds and genetic resilience in relation to life history. Future suggested research priorities include undertaking integrated studies on a range of species in the same landscapes; better documentation of the extent and duration of impact; and most importantly, combining neutral marker, pollination dynamics, ecological consequences, and progeny fitness assessment within single studies.


Forest Ecology and Management | 2002

Chloroplast DNA variation in European white oaks: Phylogeography and patterns of diversity based on data from over 2600 populations

Rémy J. Petit; Ulrike M. Csaikl; Sándor Bordács; Kornel Burg; Els Coart; Joan Cottrell; Barbara van Dam; John D Deans; Sylvie Dumolin-Lapègue; Silvia Fineschi; Reiner Finkeldey; Amanda Gillies; Izabela Glaz; Pablo G. Goicoechea; Jan S. Jensen; Armin O. König; Andrew J. Lowe; Søren Flemming Madsen; Gabor Mátyás; Robert Munro; Maria Olalde; Marie-Hélène Pemonge; Flaviu Popescu; Danko Slade; Helen Tabbener; Daniela Taurchini; Sven G.M de Vries; Birgit Ziegenhagen; Antoine Kremer

A consortium of 16 laboratories have studied chloroplast DNA (cpDNA) variation in European white oaks. A common strategy for molecular screening, based on restriction analysis of four PCR-amplified cpDNA fragments, was used to allow comparison among the different laboratories. A total of 2613 oak populations (12,214 individual trees from eight species) were sampled from 37 countries, and analysed with the four fragments. They belong to eight related oak species: Quercus robur, Q. petraea, Q. pubescens, Q. frainetto, Q. faginea, Q. pyrenaica, Q. canariensis and Q. macranthera. During this survey, 45 chloroplast variants were detected and are described together with their phylogenetic relationships, but several of these haplotypes were pooled when there were some risks of confusion across laboratories during the survey, and finally 32 remained that were mapped and used in diversity analyses. A strong phylogeographic structure is apparent from the data, where related haplotypes have broadly similar geographic distributions. In total, six cpDNA lineages are identified, which have distinct geographic distributions, mainly along a longitudinal gradient. Most haplotypes found in northern Europe are also present in the south, whereas the converse is not true, suggesting that the majority of mutations observed were generated prior to postglacial recolonisation, corroborating the conclusions of earlier studies. The description of a new western European lineage constitutes a major finding, compared to earlier phylogenetic treatments. Although the eight oak species studied systematically share cpDNA variants when in sympatry, they partition cpDNA diversity differently, as a consequence of their different ecology and life history attributes. Regional differences in levels of differentiation also exist (either species-specific or general); these seem to be related to the intensity of past and present management of the forests across Europe but also to the level of fragmentation of the range within these regions.


Trends in Ecology and Evolution | 1999

Molecular phylogeography, intraspecific variation and the conservation of tree species

Adrian C. Newton; Theo R. Allnutt; A. C. M. Gillies; Andrew J. Lowe; Richard A. Ennos

Tree species are becoming the focus of increasing conservation concern, with some 9000 species now threatened globally. Studies of intraspecific variation can contribute to the development of conservation strategies, by identifying appropriate units for conservation. The recent application of molecular techniques to a variety of tree species has highlighted a far higher degree of population differentiation than indicated by previous isozyme analyses, a result consistent with theoretical predictions. Analysis of the geographic distribution of cpDNA lineages has also enabled current patterns of population differentiation to be related to postglacial migration routes from different forest refugia. Such results highlight the importance of refugial areas for conservation of intraspecific variation in tree species.


Evolutionary Applications | 2011

Building evolutionary resilience for conserving biodiversity under climate change.

Carla M. Sgrò; Andrew J. Lowe; Ary A. Hoffmann

Evolution occurs rapidly and is an ongoing process in our environments. Evolutionary principles need to be built into conservation efforts, particularly given the stressful conditions organisms are increasingly likely to experience because of climate change and ongoing habitat fragmentation. The concept of evolutionary resilience is a way of emphasizing evolutionary processes in conservation and landscape planning. From an evolutionary perspective, landscapes need to allow in situ selection and capture high levels of genetic variation essential for responding to the direct and indirect effects of climate change. We summarize ideas that need to be considered in planning for evolutionary resilience and suggest how they might be incorporated into policy and management to ensure that resilience is maintained in the face of environmental degradation.


Evolutionary Applications | 2008

Seed supply for broadscale restoration: maximizing evolutionary potential.

Linda M. Broadhurst; Andrew J. Lowe; David J. Coates; Saul A. Cunningham; Maurice Mcdonald; Peter A. Vesk; Colin J. Yates

Restoring degraded land to combat environmental degradation requires the collection of vast quantities of germplasm (seed). Sourcing this material raises questions related to provenance selection, seed quality and harvest sustainability. Restoration guidelines strongly recommend using local sources to maximize local adaptation and prevent outbreeding depression, but in highly modified landscapes this restricts collection to small remnants where limited, poor quality seed is available, and where harvesting impacts may be high. We review three principles guiding the sourcing of restoration germplasm: (i) the appropriateness of using ‘local’ seed, (ii) sample sizes and population characteristics required to capture sufficient genetic diversity to establish self‐sustaining populations and (iii) the impact of over‐harvesting source populations. We review these topics by examining current collection guidelines and the evidence supporting these, then we consider if the guidelines can be improved and the consequences of not doing so. We find that the emphasis on local seed sourcing will, in many cases, lead to poor restoration outcomes, particularly at broad geographic scales. We suggest that seed sourcing should concentrate less on local collection and more on capturing high quality and genetically diverse seed to maximize the adaptive potential of restoration efforts to current and future environmental change.


Molecular Ecology | 2003

How much effort is required to isolate nuclear microsatellites from plants

J. Squirrell; Peter M. Hollingsworth; Mary Woodhead; Joanne Russell; Andrew J. Lowe; M. Gibby; W. Powell

The attributes of codominance, reproducibility and high resolution have all contributed towards the current popularity of nuclear microsatellites as genetic markers in molecular ecological studies. One of their major drawbacks, however, is the development phase required to obtain working primers for a given study species. To facilitate project planning, we have reviewed the literature to quantify the workload involved in isolating nuclear microsatellites from plants. We highlight the attrition of loci at each stage in the process, and the average effort required to obtain 10 working microsatellite primer pairs.


Molecular Ecology Resources | 2011

Rise of the machines - recommendations for ecologists when using next generation sequencing for microsatellite development

Michael G. Gardner; Alison J. Fitch; Terry Bertozzi; Andrew J. Lowe

Next generation sequencing is revolutionizing molecular ecology by simplifying the development of molecular genetic markers, including microsatellites. Here, we summarize the results of the large‐scale development of microsatellites for 54 nonmodel species using next generation sequencing and show that there are clear differences amongst plants, invertebrates and vertebrates for the number and proportion of motif types recovered that are able to be utilized as markers. We highlight that the heterogeneity within each group is very large. Despite this variation, we provide an indication of what number of sequences and consequent proportion of a 454 run are required for the development of 40 designable, unique microsatellite loci for a typical molecular ecological study. Finally, to address the challenges of choosing loci from the vast array of microsatellite loci typically available from partial genome runs (average for this study, 2341 loci), we provide a microsatellite development flowchart as a procedural guide for application once the results of a partial genome run are obtained.

Collaboration


Dive into the Andrew J. Lowe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Cavers

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. Prentis

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Carlos Navarro

Centro Agronómico Tropical de Investigación y Enseñanza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben Sparrow

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar

Antoine Kremer

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Ed Biffin

University of Adelaide

View shared research outputs
Researchain Logo
Decentralizing Knowledge