Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew J. Mouland is active.

Publication


Featured researches published by Andrew J. Mouland.


Journal of Virology | 2000

The Double-Stranded RNA-Binding Protein Staufen Is Incorporated in Human Immunodeficiency Virus Type 1: Evidence for a Role in Genomic RNA Encapsidation

Andrew J. Mouland; Johanne Mercier; Ming Luo; Luc Bernier; Éric A. Cohen

ABSTRACT Human Staufen (hStau), a double-stranded RNA (dsRNA)-binding protein that is involved in mRNA transport, is incorporated in human immunodeficiency virus type 1 (HIV-1) and in other retroviruses, including HIV-2 and Moloney murine leukemia virus. Sucrose and Optiprep gradient analyses reveal cosedimentation of hStau with purified HIV-1, while subtilisin assays demonstrate that it is internalized. hStau incorporation in HIV-1 is selective, is dependent on an intact functional dsRNA-binding domain, and quantitatively correlates with levels of encapsidated HIV-1 genomic RNA. By coimmunoprecipitation and reverse transcription-PCR analyses, we demonstrate that hStau is associated with HIV-1 genomic RNA in HIV-1-expressing cells and purified virus. Overexpression of hStau enhances virion incorporation levels, and a corresponding, threefold increase in HIV-1 genomic RNA encapsidation levels. This coordinated increase in hStau and genomic RNA packaging had a significant negative effect on viral infectivity. This study is the first to describe hStau within HIV-1 particles and provides evidence that hStau binds HIV-1 genomic RNA, indicating that it may be implicated in retroviral genome selection and packaging into assembling virions.


Nucleic Acids Research | 2005

Interaction of Staufen1 with the 5′ end of mRNA facilitates translation of these RNAs

Samuel Dugré-Brisson; George Elvira; Karine Boulay; Laurent Chatel-Chaix; Andrew J. Mouland

Staufen1 is a component of transported ribonucleoprotein complexes. Genetic work in Drosophila has suggested that Staufen plays a role in the de-repression of translation of oskar mRNA following localization. To determine whether Staufen1 can play a similar role in mammals, we studied translation of transcripts in the presence or in the absence of Staufen1. Translationally repressed mRNAs were generated by fusing the structured human immunodeficiency virus type 1 trans-activating response (TAR) element to the 5′ end of a reporter transcript. In rabbit reticulocyte lysates and in mammalian cultured cells, the addition of Staufen1 resulted in the up-regulation of reporter activity when translation was driven by the TAR-bearing RNA. In contrast, Staufen1 had no effect on translation of efficiently translated mRNAs lacking an apparent structured 5′ end, suggesting that Staufen1-binding to the 5′ end is required for enhanced translation. Consistently, Staufen1 RNA-binding activity is necessary for this translational effect. In addition, similar up-regulation of translation was observed when Staufen1 was tethered to the 5′ end of mRNAs via other structured RNAs, the highest level of translational increase being obtained with the bona fide Staufen1-binding site of the Arf1 transcript. The expression of Staufen1 promoted polysomal loading of TAR-luciferase transcripts resulting in enhanced translation. Our results support a model in which the expression of Staufen1 and its interaction with the 5′ end of RNA and ribosomes facilitate translation initiation.


Molecular and Cellular Biology | 2004

Identification of Staufen in the human immunodeficiency virus type 1 Gag ribonucleoprotein complex and a role in generating infectious viral particles

Laurent Chatel-Chaix; Jean-François Clément; Catherine Martel; Véronique Bériault; Anne Gatignol; Andrew J. Mouland

ABSTRACT Staufen is a host protein that is selectively incorporated into human immunodeficiency virus type 1 (HIV-1) particles in a poorly defined process that involves the selection of HIV-1 genomic RNA for encapsidation and the activity of its third double-stranded RNA-binding domain (dsRBD3). To better understand this, we characterized its interactions with pr55Gag, the principal mediator of HIV-1 genomic RNA encapsidation. Chimeric proviruses harboring wild-type or mutant forms of Staufen were expressed in 293T cells. Cell fractionation analyses demonstrated that Staufen cosedimented with pr55Gag within detergent-resistant, trypsin-sensitive complexes that excluded mature capsid and matrix proteins. Coimmunoprecipitation and bioluminescence resonance energy transfer assays demonstrated a specific and direct interaction between Staufen and the nucleocapsid domain of pr55Gag in vitro and in live cells. This interaction is shown here to be mediated by Staufens dsRBD3, with a contribution from its C-terminal domain. Immunoprecipitation and reverse transcription-PCR analyses showed that the 9-kb genomic RNA was found within Staufen-containing immune complexes. Spliced HIV-1 RNAs were not detected in these Staufen complexes, indicating a preferential association of Staufen with the 9-kb species. These results substantiate that Staufen and pr55Gag interact directly during HIV-1 expression. Knockdown of Staufen expression by small interfering RNAs in HIV-1-expressing cells demonstrated that this cellular protein was important for the generation of infectious virus. These data show that Staufen, pr55Gag, and genomic RNA are part of the same intracellular complex and support a role for Staufen in pr55Gag function in viral assembly, genomic RNA encapsidation, and the generation of infectious viral particles.


Traffic | 2006

Trafficking of HIV-1 RNA is mediated by heterogeneous nuclear ribonucleoprotein A2 expression and impacts on viral assembly.

Kathy Lévesque; Melanie Halvorsen; Levon Abrahamyan; Laurent Chatel-Chaix; Viviane Poupon; Heather Gordon; Anne Gatignol; Andrew J. Mouland

Few details are known about how the human immunodeficiency virus type 1 (HIV‐1) genomic RNA is trafficked in the cytoplasm. Part of this process is controlled by the activity of heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2). The role of hnRNP A2 during the expression of a bona fide provirus in HeLa cells is investigated in this study. Using immunofluorescence and fluorescence in situ hybridization techniques, we show that knockdown of hnRNP A2 expression in HIV‐1‐expressing cells results in the rapid accumulation of HIV‐1 genomic RNA in a distinct, cytoplasmic space that corresponds to the microtubule‐organizing center (MTOC). The RNA exits in the nucleus and accumulates at the MTOC region as a result of hnRNP A2 knockdown even during the expression of a provirus harboring mutations in the hnRNP A2‐response element (A2RE), the expression of which results in nuclear retention of genomic RNA. We also demonstrate that hnRNP A2 expression is required for downstream trafficking of genomic RNA from the MTOC in the cytoplasm. Genomic RNA localization at the MTOC that was both the result of hnRNP A2 knockdown and the overexpression of Rab7‐interacting lysosomal protein had little effect on pr55Gag synthesis but negatively influenced virus production and infectivity. These data indicate that altered HIV‐1 genomic RNA localization modulates viral assembly and that the MTOC serves as a central site to which HIV‐1 genomic RNA converges following its exit from the nucleus, with the host protein, hnRNP A2, playing a central role in taking it to and from this site in the cell.


Journal of Cell Science | 2010

Novel Staufen1 ribonucleoproteins prevent formation of stress granules but favour encapsidation of HIV-1 genomic RNA.

Levon Abrahamyan; Laurent Chatel-Chaix; Lara Ajamian; Miroslav P. Milev; Anne Monette; Jean-François Clément; Rujun Song; Martin Lehmann; Michael Laughrea; Graciela Lidia Boccaccio; Andrew J. Mouland

Human immunodeficiency virus type 1 (HIV-1) Gag selects for and mediates genomic RNA (vRNA) encapsidation into progeny virus particles. The host protein, Staufen1 interacts directly with Gag and is found in ribonucleoprotein (RNP) complexes containing vRNA, which provides evidence that Staufen1 plays a role in vRNA selection and encapsidation. In this work, we show that Staufen1, vRNA and Gag are found in the same RNP complex. These cellular and viral factors also colocalize in cells and constitute novel Staufen1 RNPs (SHRNPs) whose assembly is strictly dependent on HIV-1 expression. SHRNPs are distinct from stress granules and processing bodies, are preferentially formed during oxidative stress and are found to be in equilibrium with translating polysomes. Moreover, SHRNPs are stable, and the association between Staufen1 and vRNA was found to be evident in these and other types of RNPs. We demonstrate that following Staufen1 depletion, apparent supraphysiologic-sized SHRNP foci are formed in the cytoplasm and in which Gag, vRNA and the residual Staufen1 accumulate. The depletion of Staufen1 resulted in reduced Gag levels and deregulated the assembly of newly synthesized virions, which were found to contain several-fold increases in vRNA, Staufen1 and other cellular proteins. This work provides new evidence that Staufen1-containing HIV-1 RNPs preferentially form over other cellular silencing foci and are involved in assembly, localization and encapsidation of vRNA.


Journal of Virology | 2005

Low TRBP Levels Support an Innate Human Immunodeficiency Virus Type 1 Resistance in Astrocytes by Enhancing the PKR Antiviral Response

Chi L. Ong; Janine Thorpe; Paul R. Gorry; Sylvie Bannwarth; Anthony Jaworowski; Jane L. Howard; Sean Chung; Shahan M. Campbell; Helen S. Christensen; Guerline Clerzius; Andrew J. Mouland; Anne Gatignol; Damian F. J. Purcell

ABSTRACT Acute human immunodeficiency virus type 1 (HIV-1) replication in astrocytes produces minimal new virus particles due, in part, to inefficient translation of viral structural proteins despite high levels of cytoplasmic viral mRNA. We found that a highly reactive double-stranded (ds) RNA-binding protein kinase (PKR) response in astrocytes underlies this inefficient translation of HIV-1 mRNA. The dsRNA elements made during acute replication of HIV-1 in astrocytes triggers PKR activation and the specific inhibition of HIV-1 protein translation. The heightened PKR response results from relatively low levels of the cellular antagonist of PKR, the TAR RNA binding protein (TRBP). Efficient HIV-1 production was restored in astrocytes by inhibiting the innate PKR response to HIV-1 dsRNA with dominant negative PKR mutants, or PKR knockdown by siRNA gene silencing. Increasing the expression of TRBP in astrocytes restored acute virus production to levels comparable to those observed in permissive cells. Therefore, the robust innate PKR antiviral response in astrocytes results from relatively low levels of TRBP expression and contributes to their restricted infection. Our findings highlight TRBP as a novel cellular target for therapeutic interventions to block productive HIV-1 replication in cells that are fully permissive for HIV-1 infection.


Molecular and Cellular Biology | 2001

RNA Trafficking Signals in Human Immunodeficiency Virus Type 1

Andrew J. Mouland; Hongbin Xu; Hongyi Cui; Winfried Krueger; Trent P. Munro; Melanie Prasol; Johanne Mercier; David Rekosh; Ross Smith; Elisa Barbarese; Éric A. Cohen; John H. Carson

ABSTRACT Intracellular trafficking of retroviral RNAs is a potential mechanism to target viral gene expression to specific regions of infected cells. Here we show that the human immunodeficiency virus type 1 (HIV-1) genome contains two sequences similar to the hnRNP A2 response element (A2RE), a cis-acting RNA trafficking sequence that binds to the trans-acting trafficking factor, hnRNP A2, and mediates a specific RNA trafficking pathway characterized extensively in oligodendrocytes. The two HIV-1 sequences, designated A2RE-1, within the major homology region of the gag gene, and A2RE-2, in a region of overlap between the vpr andtat genes, both bind to hnRNP A2 in vitro and are necessary and sufficient for RNA transport in oligodendrocytes in vivo. A single base change (A8G) in either sequence reduces hnRNP A2 binding and, in the case of A2RE-2, inhibits RNA transport. A2RE-mediated RNA transport is microtubule and hnRNP A2 dependent. Differentially labelledgag and vpr RNAs, containing A2RE-1 and A2RE-2, respectively, coassemble into the same RNA trafficking granules and are cotransported to the periphery of the cell. tat RNA, although it contains A2RE-2, is not transported as efficiently asvpr RNA. An A2RE/hnRNP A2-mediated trafficking pathway for HIV RNA is proposed, and the role of RNA trafficking in targeting HIV gene expression is discussed.


RNA | 2008

Unexpected roles for UPF1 in HIV-1 RNA metabolism and translation

Lara Ajamian; Levon Abrahamyan; Miroslav P. Milev; Pavel Ivanov; Andreas E. Kulozik; Niels H. Gehring; Andrew J. Mouland

The HIV-1 ribonucleoprotein (RNP) contains the major structural protein, pr55(Gag), viral genomic RNA, as well as the host protein, Staufen1. In this report, we show that the nonsense-mediated decay (NMD) factor UPF1 is also a component of the HIV-1 RNP. We investigated the role of UPF1 in HIV-1-expressing cells. Depletion of UPF1 by siRNA resulted in a dramatic reduction in steady-state HIV-1 RNA and pr55(Gag). Pr55(Gag) synthesis, but not the cognate genomic RNA, was efficiently rescued by expression of an siRNA-insensitive UPF1, demonstrating that UPF1 positively influences HIV-1 RNA translatability. Conversely, overexpression of UPF1 led to a dramatic up-regulation of HIV-1 expression at the RNA and protein synthesis levels. The effects of UPF1 on HIV-1 RNA stability were observed in the nucleus and cytoplasm and required ongoing translation. We also demonstrate that the effects exerted by UPF1 on HIV-1 expression were dependent on its ATPase activity, but were separable from its role in NMD and did not require interaction with UPF2.


Journal of Biological Chemistry | 2009

Intracellular Transport of Human Immunodeficiency Virus Type 1 Genomic RNA and Viral Production Are Dependent on Dynein Motor Function and Late Endosome Positioning

Martin Lehmann; Miroslav P. Milev; Levon Abrahamyan; Xiaojian Yao; Nelly Panté; Andrew J. Mouland

Our earlier work indicated that the human immunodeficiency virus type 1 (HIV-1) genomic RNA (vRNA) is trafficked to the microtubule-organizing center (MTOC) when heterogeneous nuclear ribonucleoprotein A2/B1 is depleted from cells. Also, Rab7-interacting lysosomal protein promoted dynein motor complex, late endosome and vRNA clustering at the MTOC suggesting that the dynein motor and late endosomes were involved in vRNA trafficking. To investigate the role of the dynein motor in vRNA trafficking, dynein motor function was disrupted by small interference RNA-mediated depletion of the dynein heavy chain or by p50/dynamitin overexpression. These treatments led to a marked relocalization of vRNA and viral structural protein Gag to the cell periphery with late endosomes and a severalfold increase in HIV-1 production. In contrast, rerouting vRNA to the MTOC reduced virus production. vRNA localization depended on Gag membrane association as shown using both myristoylation and Gag nucleocapsid domain proviral mutants. Furthermore, the cytoplasmic localization of vRNA and Gag was not attributable to intracellular or internalized endocytosed virus particles. Our results demonstrate that dynein motor function is important for regulating Gag and vRNA egress on endosomal membranes in the cytoplasm to directly impact on viral production.


Journal of Biological Chemistry | 2009

Human immunodeficiency virus type 1 (HIV-1) induces the cytoplasmic retention of heterogeneous nuclear ribonucleoprotein A1 by disrupting nuclear import: implications for HIV-1 gene expression.

Anne Monette; Lara Ajamian; Marcelo López-Lastra; Andrew J. Mouland

Human immunodeficiency virus type 1 (HIV-1) co-opts host proteins and cellular machineries to its advantage at every step of the replication cycle. Here we show that HIV-1 enhances heterogeneous nuclear ribonucleoprotein (hnRNP) A1 expression and promotes the relocalization of hnRNP A1 to the cytoplasm. The latter was dependent on the nuclear export of the unspliced viral genomic RNA (vRNA) and to alterations in the abundance and localization of the FG-repeat nuclear pore glycoprotein p62. hnRNP A1 and vRNA remain colocalized in the cytoplasm supporting a post-nuclear function during the late stages of HIV-1 replication. Consistently, we show that hnRNP A1 acts as an internal ribosomal entry site trans-acting factor up-regulating internal ribosome entry site-mediated translation initiation of the HIV-1 vRNA. The up-regulation and cytoplasmic retention of hnRNP A1 by HIV-1 would ensure abundant expression of viral structural proteins in cells infected with HIV-1.

Collaboration


Dive into the Andrew J. Mouland's collaboration.

Top Co-Authors

Avatar

Éric A. Cohen

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Valiente-Echeverría

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge