Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew J. Sommese is active.

Publication


Featured researches published by Andrew J. Sommese.


SIAM Journal on Numerical Analysis | 2000

Numerical Decomposition of the Solution Sets of Polynomial Systems into Irreducible Components

Andrew J. Sommese; Jan Verschelde; Charles W. Wampler

In engineering and applied mathematics, polynomial systems arise whose solution sets contain components of different dimensions and multiplicities. In this article we present algorithms, based on homotopy continuation, that compute much of the geometric information contained in the primary decomposition of the solution set. In particular, ignoring multiplicities, our algorithms lay out the decomposition of the set of solutions into irreducible components, by finding, at each dimension, generic points on each component. As by-products, the computation also determines the degree of each component and an upper bound on its multiplicity. The bound is sharp (i.e., equal to one) for reduced components. The algorithms make essential use of generic projection and interpolation, and can, if desired, describe each irreducible component precisely as the common zeroes of a finite number of polynomials.


Journal of Complexity | 2000

Numerical Homotopies to Compute Generic Points on Positive Dimensional Algebraic Sets

Andrew J. Sommese; Jan Verschelde

Many applications modeled by polynomial systems have positive dimensional solution components (e.g., the path synthesis problems for four-bar mechanisms) that are challenging to compute numerically by homotopy continuation methods. A procedure of A. Sommese and C. Wampler consists in slicing the components with linear subspaces in general position to obtain generic points of the components as the isolated solutions of an auxiliary system. Since this requires the solution of a number of larger overdetermined systems, the procedure is computationally expensive and also wasteful because many solution paths diverge. In this article an embedding of the original polynomial system is presented, which leads to a sequence of homotopies, with solution paths leading to generic points of all components as the isolated solutions of an auxiliary system. The new procedure significantly reduces the number of paths to solutions that need to be followed. This approach has been implemented and applied to various polynomial systems, such as the cyclic n-roots problem.


SIAM Journal on Numerical Analysis | 2002

Symmetric Functions Applied to Decomposing Solution Sets of Polynomial Systems

Andrew J. Sommese; Jan Verschelde; Charles W. Wampler

Many polynomial systems have solution sets comprised of multiple irreducible components, possibly of different dimensions. A fundamental problem of numerical algebraic geometry is to decompose such a solution set, using floating-point numerical processes, into its components. Prior work has shown how to generate sets of generic points guaranteed to include points from every component. Furthermore, we have shown how monodromy can be used to efficiently predict the partition of these points by membership in the components. However, confirmation of this prediction required an expensive procedure of sampling each component to find an interpolating polynomial that vanishes on it. This paper proves theoretically and demonstrates in practice that linear traces suffice for this verification step, which gives great improvement in both computational speed and numerical stability. Moreover, in the case that one may still wish to compute an interpolating polynomial, we show how to do so more efficiently by building a structured grid of samples, using divided differences, and applying symmetric functions. Several test problems illustrate the effectiveness of the new methods.


ACM Transactions on Mathematical Software | 1989

Finding all isolated solutions to polynomial systems using HOMPACK

Alexander P. Morgan; Andrew J. Sommese; Layne T. Watson

Although the theory of polynomial continuation has been established for over a decade (following the work of Garcia, Zangwill, and Drexler), it is difficult to solve polynomial systems using continuation in practice. Divergent paths (solutions at infinity), singular solutions, and extreme scaling of coefficients can create catastrophic numerical problems. Further, the large number of paths that typically arise can be discouraging. In this paper we summarize polynomial-solving homotopy continuation and report on the performance of three standard path-tracking algorithms (as implemented in HOMPACK) in solving three physical problems of varying degrees of difficulty. Our purpose is to provide useful information on solving polynomial systems, including specific guidelines for homotopy construction and parameter settings. The m-homogeneous strategy for constructing polynomial homotopies is outlined, along with more traditional approaches. Computational comparisons are included to illustrate and contrast the major HOMPACK options. The conclusions summarize our numerical experience and discuss areas for future research.


Archive | 2001

Using Monodromy to Decompose Solution Sets of Polynomial Systems into Irreducible Components

Andrew J. Sommese; Jan Verschelde; Charles W. Wampler

To decompose solution sets of polynomial systems into irreducible components, homotopy continuation methods generate the action of a natural monodromy group which partially classifles generic points onto their respective irreducible components. As illustrated by the performance on several test examples, this new method achieves a great increase in speed and accuracy, as well as improved numerical conditioning of the multivariate interpolation problem. 2000 Mathematics Subject Classiflcation. Primary 65H10; Secondary 13P05, 14Q99, 68W30.


SIAM Journal on Numerical Analysis | 2008

Adaptive Multiprecision Path Tracking

Daniel J. Bates; Jonathan D. Hauenstein; Andrew J. Sommese; Charles W. Wampler

This article treats numerical methods for tracking an implicitly defined path. The numerical precision required to successfully track such a path is difficult to predict a priori, and indeed it may change dramatically through the course of the path. In current practice, one must either choose a conservatively large numerical precision at the outset or rerun paths multiple times in successively higher precision until success is achieved. To avoid unnecessary computational cost, it would be preferable to adaptively adjust the precision as the tracking proceeds in response to the local conditioning of the path. We present an algorithm that can be set to either reactively adjust precision in response to step failure or proactively set the precision using error estimates. We then test the relative merits of reactive and proactive adaptation on several examples arising as homotopies for solving systems of polynomial equations.


Journal of Mechanical Design | 2004

Advances in Polynomial Continuation for Solving Problems in Kinematics

Andrew J. Sommese; Jan Verschelde; Charles W. Wampler

For many mechanical systems, including nearly all robotic manipulators, the set of possible configurations that the links may assume can be described by a system of polynomial equations. Thus, solving such systems is central to many problems in analyzing the motion of a mechanism or in designing a mechanism to achieve a desired motion. This paper describes techniques, based on polynomial continuation, for numerically solving such systems. Whereas in the past, these techniques were focused on finding isolated roots, we now address the treatment of systems having higher-dimensional solution sets. Special attention is given to cases of exceptional mechanisms, which have a higher degree of freedom of motion than predicted by their mobility. In fact, such mechanisms often have several disjoint assembly modes, and the degree of freedom of motion is not necessarily the same in each mode. Our algorithms identify all such assembly modes, determine their dimension and degree, and give sample points on each.


Archive | 2005

Introduction to numerical algebraic geometry

Andrew J. Sommese; Jan Verschelde; Charles W. Wampler

In a 1996 paper, Andrew Sommese and Charles Wampler began developing a new area, “Numerical Algebraic Geometry”, which would bear the same relation to “Algebraic Geometry” that “Numerical Linear Algebra” bears to “Linear Algebra”.


ACM Transactions on Mathematical Software | 2000

Algorithm 801: POLSYS_PLP: a partitioned linear product homotopy code for solving polynomial systems of equations

Steven M. Wise; Andrew J. Sommese; Layne T. Watson

Globally convergent, probability-one homotopy methods have proven to be very effective for finding all the isolated solutions to polynomial systems of equations. After many years of development, homotopy path trackers based on probability-one homotopy methods are reliable and fast. Now, theoretical advances reducing the number of homotopy paths that must be tracked, and in the handling of singular solutions, have made probability-one homotopy methods even more practical. POLSYS_PLP consists of Fortran 90 modules for finding all isolated solutions of a complex coefficient polynomial system of equations. The package is intended to be used in conjunction with HOMPACK90 (Algorithm 777), and makes extensive use of Fortran 90 derived data types to support a partitioned linear product (PLP) polynomial system structure. PLP structure is a generalization of m-homogeneous structure, whereby each component of the system can have a different m-homogeneous structure. The code requires a PLP structure as input, and although finding the optimal PLP structure is a difficult combinatorial problem, generally physical or engineering intuition about a problem yields a very good structure. POLSYS_PLP employs a sophisticated power series end game for handling singular solutions, and provides support for problem definition both at a high level and via hand-crafted code. Different PLP structures and their corresponding Bezout


Numerische Mathematik | 1990

Computing singular solutions to nonlinear analytic systems

Alexander P. Morgan; Andrew J. Sommese; Charles W. Wampler

SummaryA method to generate an accurate approximation to a singular solution of a system of complex analytic equations is presented. Since manyreal systems extend naturally tocomplex analytic systems, this porvides a method for generating approximations to singular solutions to real systems. Examples include systems of polynomials and systems made up of trigonometric, exponential, and polynomial terms. The theorem on which the method is based is proven using results from several complex variables. No special conditions on the derivatives of the system, such as restrictions on the rank of the Jacobian matrix at the solution, are required. The numerical method itself is developed from techniques of homotopy continuation and 1-dimensional quadrature. A specific implementation is given, and the results of numerical experiments in solving five test problems are presented.

Collaboration


Dive into the Andrew J. Sommese's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. Bates

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Verschelde

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Chris Peterson

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Bei Hu

University of Notre Dame

View shared research outputs
Researchain Logo
Decentralizing Knowledge