Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew J. Souers is active.

Publication


Featured researches published by Andrew J. Souers.


Nature Medicine | 2013

ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets

Andrew J. Souers; Joel D. Leverson; Erwin R. Boghaert; Scott L. Ackler; Nathaniel D. Catron; Jun Chen; Brian D Dayton; H. Ding; Sari H. Enschede; Wayne J. Fairbrother; David C. S. Huang; Sarah G. Hymowitz; Sha Jin; Seong Lin Khaw; Peter Kovar; Lloyd T. Lam; Jackie Lee; Heather Maecker; Kennan Marsh; Kylie D. Mason; Michael J. Mitten; Paul Nimmer; Anatol Oleksijew; Chang H. Park; Cheol-Min Park; Darren C. Phillips; Andrew W. Roberts; Deepak Sampath; John F. Seymour; Morey L. Smith

Proteins in the B cell CLL/lymphoma 2 (BCL-2) family are key regulators of the apoptotic process. This family comprises proapoptotic and prosurvival proteins, and shifting the balance toward the latter is an established mechanism whereby cancer cells evade apoptosis. The therapeutic potential of directly inhibiting prosurvival proteins was unveiled with the development of navitoclax, a selective inhibitor of both BCL-2 and BCL-2–like 1 (BCL-XL), which has shown clinical efficacy in some BCL-2–dependent hematological cancers. However, concomitant on-target thrombocytopenia caused by BCL-XL inhibition limits the efficacy achievable with this agent. Here we report the re-engineering of navitoclax to create a highly potent, orally bioavailable and BCL-2–selective inhibitor, ABT-199. This compound inhibits the growth of BCL-2–dependent tumors in vivo and spares human platelets. A single dose of ABT-199 in three patients with refractory chronic lymphocytic leukemia resulted in tumor lysis within 24 h. These data indicate that selective pharmacological inhibition of BCL-2 shows promise for the treatment of BCL-2–dependent hematological cancers.


Science Translational Medicine | 2015

Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy

Joel D. Leverson; Darren C. Phillips; Michael J. Mitten; Erwin R. Boghaert; Stephen K. Tahir; Lisa D. Belmont; Paul Nimmer; Yu Xiao; Xiaoju Max Ma; Kym N. Lowes; Peter Kovar; Jun Chen; Sha Jin; Morey L. Smith; John Xue; Haichao Zhang; Anatol Oleksijew; Terrance J. Magoc; Kedar S. Vaidya; Daniel H. Albert; Jacqueline M. Tarrant; Nghi La; Le Wang; Zhi-Fu Tao; Michael D. Wendt; Deepak Sampath; Saul H. Rosenberg; Chris Tse; David C. S. Huang; Wayne J. Fairbrother

Selective inhibition of BCL-XL synergizes with docetaxel to inhibit the growth of solid tumors but does not inhibit granulopoiesis. A more refined antitumor strategy The BCL-2 family is a group of related proteins that regulate apoptosis in a variety of ways. The success of anticancer treatments often hinges on the ability to induce cancer cell death by apoptosis. As a result, there has been a great deal of interest in developing drugs that can inhibit the antiapoptotic members of the BCL-2 pathway. Unfortunately, some of these drugs are also associated with dose-limiting hematologic toxicities, such as neutropenia. Now, Leverson et al. have used a toolkit of BCL-2 family inhibitors with different specificities to show that specifically inhibiting BCL-XL (one member of this protein family) is effective for killing tumors, but without the common side effects seen with less selective drugs. The BCL-2/BCL-XL/BCL-W inhibitor ABT-263 (navitoclax) has shown promising clinical activity in lymphoid malignancies such as chronic lymphocytic leukemia. However, its efficacy in these settings is limited by thrombocytopenia caused by BCL-XL inhibition. This prompted the generation of the BCL-2–selective inhibitor venetoclax (ABT-199/GDC-0199), which demonstrates robust activity in these cancers but spares platelets. Navitoclax has also been shown to enhance the efficacy of docetaxel in preclinical models of solid tumors, but clinical use of this combination has been limited by neutropenia. We used venetoclax and the BCL-XL–selective inhibitors A-1155463 and A-1331852 to assess the relative contributions of inhibiting BCL-2 or BCL-XL to the efficacy and toxicity of the navitoclax-docetaxel combination. Selective BCL-2 inhibition suppressed granulopoiesis in vitro and in vivo, potentially accounting for the exacerbated neutropenia observed when navitoclax was combined with docetaxel clinically. By contrast, selectively inhibiting BCL-XL did not suppress granulopoiesis but was highly efficacious in combination with docetaxel when tested against a range of solid tumors. Therefore, BCL-XL–selective inhibitors have the potential to enhance the efficacy of docetaxel in solid tumors and avoid the exacerbation of neutropenia observed with navitoclax. These studies demonstrate the translational utility of this toolkit of selective BCL-2 family inhibitors and highlight their potential as improved cancer therapeutics.


Journal of Medicinal Chemistry | 2008

Validation of diacyl glycerolacyltransferase I as a novel target for the treatment of obesity and dyslipidemia using a potent and selective small molecule inhibitor.

Gang Zhao; Andrew J. Souers; Martin J. Voorbach; H. Doug Falls; Brian A. Droz; Sevan Brodjian; Yau Yi Lau; Rajesh R. Iyengar; Ju Gao; Andrew S. Judd; Seble Wagaw; Matthew M. Ravn; Kenneth M. Engstrom; John K. Lynch; Mathew M. Mulhern; Jennifer L. Freeman; Brian D. Dayton; Xiaojun Wang; Nelson Grihalde; Dennis G. Fry; David W. A. Beno; Kennan C. Marsh; Zhi Su; Gilbert Diaz; Christine A. Collins; Hing L. Sham; Regina M. Reilly; Michael E. Brune; Philip R. Kym

A highly potent and selective DGAT-1 inhibitor was identified and used in rodent models of obesity and postprandial chylomicron excursion to validate DGAT-1 inhibition as a novel approach for the treatment of metabolic diseases. Specifically, compound 4a conferred weight loss and a reduction in liver triglycerides when dosed chronically in DIO mice and depleted serum triglycerides following a lipid challenge in a dose-dependent manner, thus, reproducing major phenotypical characteristics of DGAT-1(-/-) mice.


Nature Reviews Drug Discovery | 2017

From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors

Avi Ashkenazi; Wayne J. Fairbrother; Joel D. Leverson; Andrew J. Souers

Members of the B cell lymphoma 2 (BCL-2) gene family have a central role in regulating programmed cell death by controlling pro-apoptotic and anti-apoptotic intracellular signals. In cancer, apoptosis evasion through dysregulation of specific BCL-2 family genes is a recurring event; accordingly, selective inhibition of specific anti-apoptotic BCL-2 family proteins represents an exciting therapeutic opportunity. A combination of nuclear magnetic resonance (NMR)-based screening and structure-based drug design has yielded the first bona fide BCL-2 homology 3 (BH3) mimetics, including the BCL-2 and BCL-XL dual antagonist navitoclax, which is the first BCL-2 family inhibitor to show efficacy in patients with cancer. Clinical experience with navitoclax prompted the generation of the highly selective BCL-2 inhibitor venetoclax, which is now approved in the United States for the treatment of patients with chronic lymphocytic leukaemia with 17p deletion who have received at least one prior therapy. Recent advances have also been made in the development of potent and selective inhibitors of BCL-XL and myeloid cell leukaemia 1 (MCL1), which are additional BCL-2 family members with established anti-apoptotic roles in cancer. Here we review the latest progress in direct and selective targeting of BCL-2 family proteins for cancer therapy.


ACS Medicinal Chemistry Letters | 2014

Discovery of a Potent and Selective BCL-XL Inhibitor with in Vivo Activity

Zhi-Fu Tao; Lisa A. Hasvold; Le Wang; Xilu Wang; Andrew M. Petros; Chang H. Park; Erwin R. Boghaert; Nathaniel D. Catron; Jun Chen; Peter M. Colman; Peter E. Czabotar; Kurt Deshayes; Wayne J. Fairbrother; John A. Flygare; Sarah G. Hymowitz; Sha Jin; Russell A. Judge; Michael F. T. Koehler; Peter Kovar; Guillaume Lessene; Michael J. Mitten; Chudi Ndubaku; Paul Nimmer; Hans E. Purkey; Anatol Oleksijew; Darren C. Phillips; Brad E. Sleebs; Brian J. Smith; Morey L. Smith; Stephen K. Tahir

A-1155463, a highly potent and selective BCL-XL inhibitor, was discovered through nuclear magnetic resonance (NMR) fragment screening and structure-based design. This compound is substantially more potent against BCL-XL-dependent cell lines relative to our recently reported inhibitor, WEHI-539, while possessing none of its inherent pharmaceutical liabilities. A-1155463 caused a mechanism-based and reversible thrombocytopenia in mice and inhibited H146 small cell lung cancer xenograft tumor growth in vivo following multiple doses. A-1155463 thus represents an excellent tool molecule for studying BCL-XL biology as well as a productive lead structure for further optimization.


Journal of Medicinal Chemistry | 2015

Structure-guided design of a series of MCL-1 inhibitors with high affinity and selectivity.

Milan Bruncko; Le Wang; George S. Sheppard; Darren C. Phillips; Stephen K. Tahir; John Xue; Scott A. Erickson; Steve D. Fidanze; Elizabeth E. Fry; Lisa A. Hasvold; Gary J. Jenkins; Sha Jin; Russell A. Judge; Peter Kovar; David J. Madar; Paul Nimmer; Chang Park; Andrew M. Petros; Saul H. Rosenberg; Morey L. Smith; Xiaohong Song; Chaohong Sun; Zhi-Fu Tao; Xilu Wang; Yu Xiao; Haichao Zhang; Chris Tse; Joel D. Leverson; Steve W. Elmore; Andrew J. Souers

Myeloid cell leukemia 1 (MCL-1) is a BCL-2 family protein that has been implicated in the progression and survival of multiple tumor types. Herein we report a series of MCL-1 inhibitors that emanated from a high throughput screening (HTS) hit and progressed via iterative cycles of structure-guided design. Advanced compounds from this series exhibited subnanomolar affinity for MCL-1 and excellent selectivity over other BCL-2 family proteins as well as multiple kinases and GPCRs. In a MCL-1 dependent human tumor cell line, administration of compound 30b rapidly induced caspase activation with associated loss in cell viability. The small molecules described herein thus comprise effective tools for studying MCL-1 biology.


Journal of Medicinal Chemistry | 2011

Quinazoline Sulfonamides as Dual Binders of the Proteins B-Cell Lymphoma 2 and B-Cell Lymphoma Extra Long with Potent Proapoptotic Cell-Based Activity

Brad E. Sleebs; Peter E. Czabotar; Wayne J. Fairbrother; W. Douglas Fairlie; John A. Flygare; David C. S. Huang; Wilhelmus J A Kersten; Michael F. T. Koehler; Guillaume Lessene; Kym N. Lowes; John P. Parisot; Brian J. Smith; Morey L. Smith; Andrew J. Souers; Ian P. Street; Hong Yang; Jonathan B. Baell

ABT-737 and ABT-263 are potent inhibitors of the BH3 antiapoptotic proteins, Bcl-x(L) and Bcl-2. This class of putative anticancer agents invariantly contains an acylsulfonamide core. We have designed and synthesized a series of novel quinazoline-based inhibitors of Bcl-2 and Bcl-x(L) that contain a heterocyclic alternative to the acylsulfonamide. These compounds exhibit submicromolar, mechanism-based activity in human small-cell lung carcinoma cell lines in the presence of 10% human serum. This comprises the first successful demonstration of a quinazoline sulfonamide core serving as an effective benzoylsulfonamide bioisostere. Additionally, these novel quinazolines comprise only the second known class of Bcl-2 family protein inhibitors to induce mechanism-based cell death.


Molecular Cancer Therapeutics | 2016

Expression Profile of BCL-2, BCL-XL, and MCL-1 Predicts Pharmacological Response to the BCL-2 Selective Antagonist Venetoclax in Multiple Myeloma Models

Elizabeth Punnoose; Joel D. Leverson; Franklin Peale; Erwin R. Boghaert; Lisa D. Belmont; Nguyen Tan; Amy Young; Michael J. Mitten; Ellen Ingalla; Walter C. Darbonne; Anatol Oleksijew; Paul Tapang; Peng Yue; Jason Oeh; Leslie Lee; Sophie Maïga; Wayne J. Fairbrother; Martine Amiot; Andrew J. Souers; Deepak Sampath

BCL-2 family proteins dictate survival of human multiple myeloma cells, making them attractive drug targets. Indeed, multiple myeloma cells are sensitive to antagonists that selectively target prosurvival proteins such as BCL-2/BCL-XL (ABT-737 and ABT-263/navitoclax) or BCL-2 only (ABT-199/GDC-0199/venetoclax). Resistance to these three drugs is mediated by expression of MCL-1. However, given the selectivity profile of venetoclax it is unclear whether coexpression of BCL-XL also affects antitumor responses to venetoclax in multiple myeloma. In multiple myeloma cell lines (n = 21), BCL-2 is expressed but sensitivity to venetoclax correlated with high BCL-2 and low BCL-XL or MCL-1 expression. Multiple myeloma cells that coexpress BCL-2 and BCL-XL were resistant to venetoclax but sensitive to a BCL-XL–selective inhibitor (A-1155463). Multiple myeloma xenograft models that coexpressed BCL-XL or MCL-1 with BCL-2 were also resistant to venetoclax. Resistance to venetoclax was mitigated by cotreatment with bortezomib in xenografts that coexpressed BCL-2 and MCL-1 due to upregulation of NOXA, a proapoptotic factor that neutralizes MCL-1. In contrast, xenografts that expressed BCL-XL, MCL-1, and BCL-2 were more sensitive to the combination of bortezomib with a BCL-XL selective inhibitor (A-1331852) but not with venetoclax cotreatment when compared with monotherapies. IHC of multiple myeloma patient bone marrow biopsies and aspirates (n = 95) revealed high levels of BCL-2 and BCL-XL in 62% and 43% of evaluable samples, respectively, while 34% were characterized as BCL-2High/BCL-XLLow. In addition to MCL-1, our data suggest that BCL-XL may also be a potential resistance factor to venetoclax monotherapy and in combination with bortezomib. Mol Cancer Ther; 15(5); 1132–44. ©2016 AACR.


Bioorganic & Medicinal Chemistry Letters | 2014

Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein.

Andrew M. Petros; Steven L. Swann; Danying Song; Kerren K. Swinger; Chang Park; Haichao Zhang; Michael D. Wendt; Aaron R. Kunzer; Andrew J. Souers; Chaohong Sun

Apoptosis is regulated by the BCL-2 family of proteins, which is comprised of both pro-death and pro-survival members. Evasion of apoptosis is a hallmark of malignant cells. One way in which cancer cells achieve this evasion is thru overexpression of the pro-survival members of the BCL-2 family. Overexpression of MCL-1, a pro-survival protein, has been shown to be a resistance factor for Navitoclax, a potent inhibitor of BCL-2 and BCL-XL. Here we describe the use of fragment screening methods and structural biology to drive the discovery of novel MCL-1 inhibitors from two distinct structural classes. Specifically, cores derived from a biphenyl sulfonamide and salicylic acid were uncovered in an NMR-based fragment screen and elaborated using high throughput analog synthesis. This culminated in the discovery of selective and potent inhibitors of MCL-1 that may serve as promising leads for medicinal chemistry optimization efforts.


Bioorganic & Medicinal Chemistry Letters | 1998

Novel inhibitors of α4β1 integrin receptor interactions through library synthesis and screening

Andrew J. Souers; Alex A. Virgilio; Stephan S Schürer; Jonathan A. Ellman; Timothy P. Kogan; Henry E West; Wendy Ankener; Peter Vanderslice

Abstract A library of 2302 small molecule β-turn mimetics was screened for inhibition of the α4β1 integrin-CS1 splice variant binding interaction. Preliminary data revealed several active ligands, and validation with purified material culminated in the identification of some of the first small molecule ligands (1, IC50 = 5 μM, and 2, IC50 = 8 μM) to be reported for this class of integrins.

Collaboration


Dive into the Andrew J. Souers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew S. Judd

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael D. Wendt

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Joel D. Leverson

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Philip R. Kym

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ju Gao

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Mathew M. Mulhern

Millennium Pharmaceuticals

View shared research outputs
Researchain Logo
Decentralizing Knowledge