Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew J. Wade is active.

Publication


Featured researches published by Andrew J. Wade.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2009

A review of the potential impacts of climate change on surface water quality

Paul Whitehead; Robert L. Wilby; Richard W. Battarbee; Martin Kernan; Andrew J. Wade

Abstract It is now accepted that some human-induced climate change is unavoidable. Potential impacts on water supply have received much attention, but relatively little is known about the concomitant changes in water quality. Projected changes in air temperature and rainfall could affect river flows and, hence, the mobility and dilution of contaminants. Increased water temperatures will affect chemical reaction kinetics and, combined with deteriorations in quality, freshwater ecological status. With increased flows there will be changes in stream power and, hence, sediment loads with the potential to alter the morphology of rivers and the transfer of sediments to lakes, thereby impacting freshwater habitats in both lake and stream systems. This paper reviews such impacts through the lens of UK surface water quality. Widely accepted climate change scenarios suggest more frequent droughts in summer, as well as flash-flooding, leading to uncontrolled discharges from urban areas to receiving water courses and estuaries. Invasion by alien species is highly likely, as is migration of species within the UK adapting to changing temperatures and flow regimes. Lower flows, reduced velocities and, hence, higher water residence times in rivers and lakes will enhance the potential for toxic algal blooms and reduce dissolved oxygen levels. Upland streams could experience increased dissolved organic carbon and colour levels, requiring action at water treatment plants to prevent toxic by-products entering public water supplies. Storms that terminate drought periods will flush nutrients from urban and rural areas or generate acid pulses in acidified upland catchments. Policy responses to climate change, such as the growth of bio-fuels or emission controls, will further impact freshwater quality.


Water Resources Research | 2011

Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

Eric F. Wood; Joshua K. Roundy; Tara J. Troy; L.P.H. van Beek; Marc F. P. Bierkens; Eleanor Blyth; Ad de Roo; Petra Döll; Michael B. Ek; James S. Famiglietti; David J. Gochis; Nick van de Giesen; Paul R. Houser; Stefan Kollet; Bernhard Lehner; Dennis P. Lettenmaier; Christa D. Peters-Lidard; Murugesu Sivapalan; Justin Sheffield; Andrew J. Wade; Paul Whitehead

Monitoring Earths terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (∼10–100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earths terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a “grand challenge” to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.


Environmental Research Letters | 2013

Future changes in atmospheric rivers and their implications for winter flooding in Britain

David A. Lavers; Richard P. Allan; Gabriele Villarini; Benjamin Lloyd-Hughes; David Brayshaw; Andrew J. Wade

Within the warm conveyor belt of extra-tropical cyclones, atmospheric rivers (ARs) are the key synoptic features which deliver the majority of poleward water vapour transport, and are associated with episodes of heavy and prolonged rainfall. ARs are responsible for many of the largest winter floods in the mid-latitudes resulting in major socioeconomic losses; for example, the loss from United Kingdom (UK) flooding in summer/winter 2012 is estimated to be about


Science of The Total Environment | 2002

Phosphorus sources, speciation and dynamics in the lowland eutrophic River Kennet, UK.

Helen P. Jarvie; Colin Neal; Richard J. Williams; Margaret Neal; Heather Wickham; Linda Hill; Andrew J. Wade; Alan Warwick; John W. White

1.6 billion in damages. Given the well-established link between ARs and peak river flows for the present day, assessing how ARs could respond under future climate projections is of importance in gauging future impacts from flooding. We show that North Atlantic ARs are projected to become stronger and more numerous in the future scenarios of multiple simulations from five state-of-the-art global climate models (GCMs) in the fifth Climate Model Intercomparison Project (CMIP5). The increased water vapour transport in projected ARs implies a greater risk of higher rainfall totals and therefore larger winter floods in Britain, with increased AR frequency leading to more flood episodes. In the high emissions scenario (RCP8.5) for 2074‐2099 there is an approximate doubling of AR frequency in the five GCMs. Our results suggest that the projected change in ARs is predominantly a thermodynamic response to warming resulting from anthropogenic radiative forcing.


Science of The Total Environment | 2001

Riparian zone influence on stream water chemistry at different spatial scales: a GIS-based modelling approach, an example for the Dee, NE Scotland

Richard P. Smart; Chris Soulsby; Malcolm S. Cresser; Andrew J. Wade; John Townend; Michael F. Billett; S.J. Langan

This paper examines the behaviour of phosphorus (P) in a lowland chalk (Cretaceous-age) stream, the upper River Kennet in southern England, which has been subject to P remediation by tertiary treatment at the major sewage treatment works in the area. The effects of treatment are examined in relation to boron, a conservative tracer of sewage effluent and in terms of the relative contributions of soluble reactive phosphorus (SRP) loads from point and diffuse sources, and in-stream SRP loads. These results indicate a baseline reduction in in-stream SRP concentrations immediately following P-treatment of approximately 72%. Subsequent high flows result in a greater contribution of diffuse inputs and increases in SRP levels relative to the initial post-treatment period. The dynamics of SRP and particulate phosphorus (PP) are examined under a wide range of river flow conditions. Given the flashy nature of near-surface runoff in the River Kennet, sub-weekly (daily automated) sampling was used to examine the dynamics in SRP and PP concentrations in response to storm events. Simple empirical models linking weekly SRP concentrations with flow were developed. The empirical models were successfully applied to the daily data, to partition TP measurements and provide an estimate of daily SRP and PP concentrations. Mass balance studies were used to examine net gains and losses along the experimental river reach and indicate large net losses (up to 60%) during the extreme low flows and high SRP concentrations prior to P-treatment, which may be linked to extensive epiphytic growth. Phosphorus dynamics and response to P-treatment are discussed in relation to hydrological controls in permeable chalk catchments and wider implications for eutrophication management are examined.


Progress in Physical Geography | 2015

Climate change and water in the UK - past changes and future prospects

Glen Watts; Richard W. Battarbee; John P. Bloomfield; J. Crossman; A. Daccache; Isabelle Durance; J. Alex Elliott; Grace Garner; Jamie Hannaford; David M. Hannah; Tim Hess; Christopher R. Jackson; Alison L. Kay; Martin Kernan; Jerry W. Knox; Jonathan Mackay; Dt Monteith; S.J. Ormerod; Jemima Rance; Marianne E. Stuart; Andrew J. Wade; Steven Wade; Paul Whitehead; Robert L. Wilby

A geographical information system (GIS-ARC/INFO) was used to collate existing spatial data sets on catchment characteristics to predict stream water quality using simple empirical models. The study, based on the river Dee catchment in NE Scotland, found that geological maps and associated geochemical information provided a suitable framework for predicting chemical parameters associated with acidification sensitivity (including alkalinity and base cation concentrations). In particular, it was found that in relatively undisturbed catchments, the parent material and geochemistry of the riparian zone, when combined with a simple hydrological flow path model, could be used to accurately predict stream water chemistry at a range of flows (Q95 to > Q5) and spatial scales (1-1000 km2). This probably reflects the importance of the riparian zone as an area where hydrological inputs to stream systems occur via flow paths in the soil and groundwater zones. Thus, evolution of drainage water chemistry appears to retain the geochemical characteristics of the riparian area as it enters the channel network. In more intensively managed catchments, riparian land use is a further influential factor, which can be incorporated into models to improve predictions for certain base cations. The utility in providing simple hydrochemical models, based on readily available data sets, to assist environmental managers in planning land use in catchment systems is discussed.


Science of The Total Environment | 2015

Characterising phosphorus and nitrate inputs to a rural river using high-frequency concentration-flow relationships

Michael J. Bowes; Helen P. Jarvie; Sarah J. Halliday; Richard A. Skeffington; Andrew J. Wade; M. Loewenthal; Emma Gozzard; Jonathan Newman; Elizabeth J. Palmer-Felgate

Climate change is expected to modify rainfall, temperature and catchment hydrological responses across the world, and adapting to these water-related changes is a pressing challenge. This paper reviews the impact of anthropogenic climate change on water in the UK and looks at projections of future change. The natural variability of the UK climate makes change hard to detect; only historical increases in air temperature can be attributed to anthropogenic climate forcing, but over the last 50 years more winter rainfall has been falling in intense events. Future changes in rainfall and evapotranspiration could lead to changed flow regimes and impacts on water quality, aquatic ecosystems and water availability. Summer flows may decrease on average, but floods may become larger and more frequent. River and lake water quality may decline as a result of higher water temperatures, lower river flows and increased algal blooms in summer, and because of higher flows in the winter. In communicating this important work, researchers should pay particular attention to explaining confidence and uncertainty clearly. Much of the relevant research is either global or highly localized: decision-makers would benefit from more studies that address water and climate change at a spatial and temporal scale appropriate for the decisions they make.


Science of The Total Environment | 2012

An analysis of long-term trends, seasonality and short-term dynamics in water quality data from Plynlimon, Wales

Sarah J. Halliday; Andrew J. Wade; Richard A. Skeffington; Colin Neal; Brian Reynolds; Philip Rowland; Margaret Neal; David Norris

The total reactive phosphorus (TRP) and nitrate concentrations of the River Enborne, southern England, were monitored at hourly interval between January 2010 and December 2011. The relationships between these high-frequency nutrient concentration signals and flow were used to infer changes in nutrient source and dynamics through the annual cycle and each individual storm event, by studying hysteresis patterns. TRP concentrations exhibited strong dilution patterns with increasing flow, and predominantly clockwise hysteresis through storm events. Despite the Enborne catchment being relatively rural for southern England, TRP inputs were dominated by constant, non-rain-related inputs from sewage treatment works (STW) for the majority of the year, producing the highest phosphorus concentrations through the spring-summer growing season. At higher river flows, the majority of the TRP load was derived from within-channel remobilisation of phosphorus from the bed sediment, much of which was also derived from STW inputs. Therefore, future phosphorus mitigation measures should focus on STW improvements. Agricultural diffuse TRP inputs were only evident during storms in the May of each year, probably relating to manure application to land. The nitrate concentration-flow relationship produced a series of dilution curves, indicating major inputs from groundwater and to a lesser extent STW. Significant diffuse agricultural inputs with anticlockwise hysteresis trajectories were observed during the first major storms of the winter period. The simultaneous investigation of high-frequency time series data, concentration-flow relationships and hysteresis behaviour through multiple storms for both phosphorus and nitrate offers a simple and innovative approach for providing new insights into nutrient sources and dynamics.


Science of The Total Environment | 1997

The prediction and management of water quality in a relatively unpolluted major Scottish catchment: current issues and experimental approaches

S.J. Langan; Andrew J. Wade; R Smart; Anthony C. Edwards; Chris Soulsby; Michael F. Billett; H.P. Jarvie; Malcolm S. Cresser; Roger Owen; Robert C. Ferrier

This paper examines two hydrochemical time-series derived from stream samples taken in the Upper Hafren catchment, Plynlimon, Wales. One time-series comprises data collected at 7-hour intervals over 22 months (Neal et al., 2012-this issue), while the other is based on weekly sampling over 20 years. A subset of determinands: aluminium, calcium, chloride, conductivity, dissolved organic carbon, iron, nitrate, pH, silicon and sulphate are examined within a framework of non-stationary time-series analysis to identify determinand trends, seasonality and short-term dynamics. The results demonstrate that both long-term and high-frequency monitoring provide valuable and unique insights into the hydrochemistry of a catchment. The long-term data allowed analysis of long-term trends, demonstrating continued increases in DOC concentrations accompanied by declining SO(4) concentrations within the stream, and provided new insights into the changing amplitude and phase of the seasonality of the determinands such as DOC and Al. Additionally, these data proved invaluable for placing the short-term variability demonstrated within the high-frequency data within context. The 7-hour data highlighted complex diurnal cycles for NO(3), Ca and Fe with cycles displaying changes in phase and amplitude on a seasonal basis. The high-frequency data also demonstrated the need to consider the impact that the time of sample collection can have on the summary statistics of the data and also that sampling during the hours of darkness provides additional hydrochemical information for determinands which exhibit pronounced diurnal variability. Moving forward, this research demonstrates the need for both long-term and high-frequency monitoring to facilitate a full and accurate understanding of catchment hydrochemical dynamics.


Science of The Total Environment | 1998

Factors regulating the spatial and temporal distribution of solute concentrations in a major river system in NE Scotland

R Smart; Chris Soulsby; Colin Neal; Andrew J. Wade; Malcolm S. Cresser; Michael F. Billett; S.J. Langan; Anthony C. Edwards; H.P. Jarvie; Roger Owen

Abstract The potential impacts of diffuse pollution from atmospheric deposition and land use on the water quantity and quality of the river Dee in N.E. Scotland are currently being assessed. The importance of headwater regions for supplying a large proportion of catchment runoff with water of a high quality is clearly demonstrated. However, the quality of this water is threatened by the impact of acid deposition in a number of sub-catchments. In some of the more agriculturally developed lowland sub-catchments, there are increasing levels of nitrogen runoff. The catchment attributes, together with hydrochemical data, are being considered in terms of an ongoing research programme established to predict the impact of future environmental and land-use change scenarios.

Collaboration


Dive into the Andrew J. Wade's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martyn N. Futter

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Bowes

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R Smart

University of Aberdeen

View shared research outputs
Researchain Logo
Decentralizing Knowledge