Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew J. Whittle is active.

Publication


Featured researches published by Andrew J. Whittle.


Cell | 2012

BMP8B Increases Brown Adipose Tissue Thermogenesis through Both Central and Peripheral Actions

Andrew J. Whittle; Stefania Carobbio; Luís Martins; Marc Slawik; Elayne Hondares; María Jesús Vázquez; Donald A. Morgan; Robert I. Csikasz; Rosalía Gallego; Sergio Rodriguez-Cuenca; Martin Dale; Samuel Virtue; Francesc Villarroya; Barbara Cannon; Kamal Rahmouni; Miguel López; Antonio Vidal-Puig

Summary Thermogenesis in brown adipose tissue (BAT) is fundamental to energy balance and is also relevant for humans. Bone morphogenetic proteins (BMPs) regulate adipogenesis, and, here, we describe a role for BMP8B in the direct regulation of thermogenesis. BMP8B is induced by nutritional and thermogenic factors in mature BAT, increasing the response to noradrenaline through enhanced p38MAPK/CREB signaling and increased lipase activity. Bmp8b−/− mice exhibit impaired thermogenesis and reduced metabolic rate, causing weight gain despite hypophagia. BMP8B is also expressed in the hypothalamus, and Bmp8b−/− mice display altered neuropeptide levels and reduced phosphorylation of AMP-activated protein kinase (AMPK), indicating an anorexigenic state. Central BMP8B treatment increased sympathetic activation of BAT, dependent on the status of AMPK in key hypothalamic nuclei. Our results indicate that BMP8B is a thermogenic protein that regulates energy balance in partnership with hypothalamic AMPK. BMP8B may offer a mechanism to specifically increase energy dissipation by BAT.


Diabetes | 2012

Nicotine Induces Negative Energy Balance Through Hypothalamic AMP-Activated Protein Kinase

Pablo B. Martínez de Morentin; Andrew J. Whittle; Johan Fernø; Ruben Nogueiras; Carlos Dieguez; Antonio Vidal-Puig; Miguel López

Smokers around the world commonly report increased body weight after smoking cessation as a major factor that interferes with their attempts to quit. Numerous controlled studies in both humans and rodents have reported that nicotine exerts a marked anorectic action. The effects of nicotine on energy homeostasis have been mostly pinpointed in the central nervous system, but the molecular mechanisms controlling its action are still not fully understood. The aim of this study was to investigate the effect of nicotine on hypothalamic AMP-activated protein kinase (AMPK) and its effect on energy balance. Here we demonstrate that nicotine-induced weight loss is associated with inactivation of hypothalamic AMPK, decreased orexigenic signaling in the hypothalamus, increased energy expenditure as a result of increased locomotor activity, increased thermogenesis in brown adipose tissue (BAT), and alterations in fuel substrate utilization. Conversely, nicotine withdrawal or genetic activation of hypothalamic AMPK in the ventromedial nucleus of the hypothalamus reversed nicotine-induced negative energy balance. Overall these data demonstrate that the effects of nicotine on energy balance involve specific modulation of the hypothalamic AMPK-BAT axis. These targets may be relevant for the development of new therapies for human obesity.


Trends in Molecular Medicine | 2011

Using brown adipose tissue to treat obesity - the central issue.

Andrew J. Whittle; Miguel López; Antonio Vidal-Puig

Current therapeutic strategies are proving inadequate to deal with growing obesity rates because of the inherent resistance of the human body to weight loss. The activation of human brown adipose tissue (BAT) represents an opportunity to increase energy expenditure and weight loss alongside improved lipid and glucose homeostasis. Research into the regulation of BAT has made increasing the thermogenic capacity of an individual to treat metabolic disease a plausible strategy, despite thermogenesis being under tight central nervous system control. Previous therapies targeted at the sympathetic nervous system have had deleterious effects because of a lack of organ specificity, but advances in our understanding of central BAT regulatory systems might open up better strategies to specifically stimulate BAT in obese individuals to aid weight reduction.


Trends in Pharmacological Sciences | 2013

Pharmacological strategies for targeting BAT thermogenesis

Andrew J. Whittle; Joana Relat-Pardo; Antonio Vidal-Puig

Biopsies following positron emission tomography coupled to computer tomography (PET-CT) imaging have confirmed the presence of thermogenically active brown adipose tissue (BAT) in adult humans, leading to suggestions that it could be stimulated to treat obesity and its associated morbidities. The mechanisms regulating thermogenesis in BAT are better understood than ever before, and many new hypotheses for increasing the amount of brown fat or its activity are currently being explored. The challenge now is to identify safe ways to manipulate specific aspects of the physiological regulation of thermogenesis, in a manner that will be bioenergetically effective. This review outlines the nature of these regulatory mechanisms both in terms of their cellular specificity and probable effectiveness given the physiological paradigms in which thermogenesis is activated. Similarly, their potential for being targeted by new or existing drugs is discussed, drawing on the known mechanisms of action of various pharmacological agents and some probable limitations that should be considered.


Cell Metabolism | 2017

Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance

Noelia Martínez-Sánchez; Patricia Seoane-Collazo; Cristina Contreras; Luis M. Varela; Joan Villarroya; Eva Rial-Pensado; Xabier Buqué; Igor Aurrekoetxea; Teresa C. Delgado; Rafael Vázquez-Martínez; Ismael González-García; Juan Roa; Andrew J. Whittle; Beatriz Gomez-Santos; Vidya Velagapudi; Y.C. Loraine Tung; Donald A. Morgan; Peter J. Voshol; Pablo B. Martínez de Morentin; Tania López-González; Laura Liñares-Pose; Francisco Gonzalez; Krishna Chatterjee; Tomás Sobrino; Gema Medina-Gomez; Roger J. Davis; Núria Casals; Matej Orešič; Anthony P. Coll; Antonio Vidal-Puig

Summary Thyroid hormones (THs) act in the brain to modulate energy balance. We show that central triiodothyronine (T3) regulates de novo lipogenesis in liver and lipid oxidation in brown adipose tissue (BAT) through the parasympathetic (PSNS) and sympathetic nervous system (SNS), respectively. Central T3 promotes hepatic lipogenesis with parallel stimulation of the thermogenic program in BAT. The action of T3 depends on AMP-activated protein kinase (AMPK)-induced regulation of two signaling pathways in the ventromedial nucleus of the hypothalamus (VMH): decreased ceramide-induced endoplasmic reticulum (ER) stress, which promotes BAT thermogenesis, and increased c-Jun N-terminal kinase (JNK) activation, which controls hepatic lipid metabolism. Of note, ablation of AMPKα1 in steroidogenic factor 1 (SF1) neurons of the VMH fully recapitulated the effect of central T3, pointing to this population in mediating the effect of central THs on metabolism. Overall, these findings uncover the underlying pathways through which central T3 modulates peripheral metabolism.


Nature Communications | 2015

Soluble LR11/SorLA represses thermogenesis in adipose tissue and correlates with BMI in humans.

Andrew J. Whittle; Meizi Jiang; Vivian Peirce; Joana Relat; Samuel Virtue; Hiroyuki Ebinuma; Isamu Fukamachi; Takashi Yamaguchi; Mao Takahashi; Takeyoshi Murano; Ichiro Tatsuno; Masahiro Takeuchi; Chiaki Nakaseko; Wenlong Jin; Zhehu Jin; Mark Campbell; Wolfgang J. Schneider; Antonio Vidal-Puig; Hideaki Bujo

Thermogenesis in brown adipose tissue (BAT) is an important component of energy expenditure in mammals. Recent studies have confirmed its presence and metabolic role in humans. Defining the physiological regulation of BAT is therefore of great importance for developing strategies to treat metabolic diseases. Here we show that the soluble form of the low-density lipoprotein receptor relative, LR11/SorLA (sLR11), suppresses thermogenesis in adipose tissue in a cell-autonomous manner. Mice lacking LR11 are protected from diet-induced obesity associated with an increased browning of white adipose tissue and hypermetabolism. Treatment of adipocytes with sLR11 inhibits thermogenesis via the bone morphogenetic protein/TGFβ signalling pathway and reduces Smad phosphorylation. In addition, sLR11 levels in humans are shown to positively correlate with body mass index and adiposity. Given the need for tight regulation of a tissue with a high capacity for energy wastage, we propose that LR11 plays an energy conserving role that is exaggerated in states of obesity.


Journal of Clinical Investigation | 2012

NPs — heart hormones that regulate brown fat?

Andrew J. Whittle; Antonio Vidal-Puig

Thermogenesis in brown adipose tissue (BAT) is well characterized as being under the control of the sympathetic nervous system. The energy-burning capacity of BAT makes it an attractive target for anti-obesity therapies. However, previous attempts to manipulate BATs sympathetic activation have lacked specificity. In this issue of the JCI, Bordicchia et al. provide new data indicating that cardiac natriuretic peptides (NPs) are also able to activate thermogenic machinery in adipose tissue. Their findings suggest a novel strategy to increase energy dissipation in adipose tissue, independent of adrenergic receptors.


Journal of Molecular Endocrinology | 2012

Searching for ways to switch on brown fat: are we getting warmer?

Andrew J. Whittle

Obesity rates are increasing alongside those of its co-morbidities, placing a huge strain on health systems across the globe. Evidence points to inappropriate levels of ectopic lipid accumulation outside of adipose tissue being a major factor in the progression of many of these diseases. Brown adipose tissue (BAT) has a huge capacity to remove lipids from the circulatory system to fuel thermogenesis. Multiple studies have now confirmed the existence of active BAT in adult humans, making strategies aimed at activating it a potential therapeutic option in obese subjects. In recent years, researchers working in murine models have found a wide range of endogenous molecules with specific roles regulating BAT. These findings place BAT firmly within the wider network of physiological regulation covering global metabolism. They also highlight the possibility of targeting thermogenesis in a safe and specific manner to remove potentially harmful lipids released from stressed or failing white adipose tissue in obese states.


Cell Research | 2013

When BAT is lacking, WAT steps up

Andrew J. Whittle; Antonio Vidal-Puig

Brown adipose tissue (BAT) has evolved to generate heat to maintain core body temperature, but it is also of great importance for the regulation of energy balance. In addition to BAT, mammals can induce the formation of “brown adipocyte-like” or “beige” fat cells in white adipose tissue and understanding their regulation could have implications for the treatment of metabolic diseases.


Nature | 2011

Physiology: Immune cells fuel the fire

Andrew J. Whittle; Antonio Vidal-Puig

Regulation of body temperature by the nervous system is essential for physiological function in both health and disease. The immune system also seems to have a crucial role in this process. See Letter p.104

Collaboration


Dive into the Andrew J. Whittle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Dieguez

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Ruben Nogueiras

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pablo B. Martínez de Morentin

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge