Andrew L. Feig
Wayne State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew L. Feig.
RNA | 2001
Jessica L. O'Rear; Shenglong Wang; Andrew L. Feig; Leonid Beigelman; Olke C. Uhlenbeck; Daniel Herschlag
Although the hammerhead reaction proceeds most efficiently in divalent cations, cleavage in 4 M LiCl is only approximately 10-fold slower than under standard conditions of 10 mM MgCl2 (Murray et al., Chem Biol, 1998, 5:587-595; Curtis & Bartel, RNA, 2001, this issue, pp. 546-552). To determine if the catalytic mechanism with high concentrations of monovalent cations is similar to that with divalent cations, we compared the activities of a series of modified hammerhead ribozymes in the two ionic conditions. Nearly all of the modifications have similar deleterious effects under both reaction conditions, suggesting that the hammerhead adopts the same general catalytic structure with both monovalent and divalent cations. However, modification of three ligands previously implicated in the binding of a functional divalent metal ion have substantially smaller effects on the cleavage rate in Li+ than in Mg2+. This result suggests that an interaction analogous to the interaction made by this divalent metal ion is absent in the monovalent reaction. Although the contribution of this divalent metal ion to the overall reaction rate is relatively modest, its presence is needed to achieve the full catalytic rate. The role of this ion appears to be in facilitating formation of the active structure, and any direct chemical role of metal ions in hammerhead catalysis is small.
Cold Spring Harbor Monograph Archive | 1999
Andrew L. Feig; Olke C. Uhlenbeck
Approximately two-thirds of the elements in the periodic table can be categorized as metals. Besides luster, malleability, and conductivity, one of the fundamental characteristics of metals is their low ionization potential. As a result, the ionic forms of these elements predominate in the biosphere. Considering the diverse properties of these ions, it is not surprising that through the process of evolution, metal ions have been co-opted into numerous roles in biology. Metal ions are required for so many biochemical reactions that it is likely that they also had an important role in the RNA world. To understand both modern and prebiotic RNA biochemistry, it is therefore essential to have a basic understanding of these inorganic elements. Metal ions were abundant in the primordial soup. It is believed that 3.8 × 10 9 years ago, the ocean was between 80°C and 100°C with a pH possibly as low as 6 (Bengston 1994). Table 1 shows the concentrations of the most common metal ions in today’s seas and in blood plasma. Although the concentrations of most of these ions in the prebiotic ocean are not known, the higher temperature and lower pH relative to the current ocean would have solvated a variety of ions and leached metal ions from the mineral-rich ocean beds. Therefore, the concentrations would have been significantly higher than the current values. One important additional difference is the extremely low concentration of easily oxidized metal ions such as Fe(II). Ferrous ion has been predicted to have been very abundant in...
Molecular Microbiology | 2010
Meghan C. Lybecker; Cassandra A. Abel; Andrew L. Feig; D. Scott Samuels
Hfq is a global regulatory RNA‐binding protein. We have identified and characterized an atypical Hfq required for gene regulation and infectivity in the Lyme disease spirochete Borrelia burgdorferi. Sequence analyses of the putative B. burgdorferi Hfq protein revealed only a modest level of similarity with the Hfq from Escherichia coli, although a few key residues are retained and the predicted tertiary structure is similar. Several lines of evidence suggest that the B. burgdorferi bb0268 gene encodes a functional Hfq homologue. First, the hfqBb gene (bb0268) restores the efficient translation of an rpoS::lacZ fusion in an E. coli hfq null mutant. Second, the Hfq from B. burgdorferi binds to the small RNA DsrABb and the rpoS mRNA. Third, a B. burgdorferi hfq null mutant was generated and has a pleiotropic phenotype that includes increased cell length and decreased growth rate, as found in hfq mutants in other bacteria. The hfqBb mutant phenotype is complemented in trans with the hfq gene from either B. burgdorferi or, surprisingly, E. coli. This is the first example of a heterologous bacterial gene complementing a B. burgdorferi mutant. The alternative sigma factor RpoS and the outer membrane lipoprotein OspC, which are induced by increased temperature and required for mammalian infection, are not upregulated in the hfq mutant. Consequently, the hfq mutant is not infectious by needle inoculation in the murine model. These data suggest that Hfq plays a key role in the regulation of pathogenicity factors in B. burgdorferi and we hypothesize that the spirochete has a complex Hfq‐dependent sRNA network.
RNA | 2008
Taewoo Lee; Andrew L. Feig
Hfq is an RNA binding protein that has been studied extensively for its role in the biology of small noncoding RNAs (ncRNAs) in bacteria, where it facilitates post-transcriptional gene regulation during stress responses. We show that Hfq also binds with high specificity and nanomolar affinity to tRNAs despite their lack of a canonical A/U rich single-stranded sequence. This affinity is comparable to that of Hfq for its validated ncRNA targets. Two sites on tRNAs are protected by Hfq binding, one on the D-stem and the other on the T-stem. Mutational analysis and competitive binding experiments indicate that Hfq uses its proximal surface (also called the L4 face) to bind tRNAs, the same surface that interacts with ncRNAs but a site distinct from where poly(A) oligonucleotides bind. hfq knockout strains are known to have broad pleiotropic phenotypes, but none of them are easily explained by or imply a role for tRNA binding. We show that hfq deletion strains have a previously unrecognized phenotype associated with mistranslation and significantly reduced translational fidelity. We infer that tRNA binding and reduced fidelity are linked by a role for Hfq in tRNA modification.
Chemistry & Biology | 1999
Andrew L. Feig; Mark Panek; William DeW. Horrocks; Olke C. Uhlenbeck
BACKGROUND Divalent metal ions serve as structural as well as catalytic cofactors in the hammerhead ribozyme reaction. The natural cofactor in these reactions is Mg(II), but its spectroscopic silence makes it difficult to study. We previously showed that a single Tb(III) ion inhibits the hammerhead ribozyme by site-specific competition for a Mg(II) ion and therefore can be used as a spectroscopic probe for the Mg(II) it replaces. RESULTS Lanthanide luminescence spectroscopy was used to study the coordination environment around Tb(III) and Eu(III) ions bound to the structurally well-characterized site on the hammerhead ribozyme. Sensitized emission and direct excitation experiments show that a single lanthanide ion binds to the ribozyme under these conditions and that three waters of hydration are displaced from the Tb(III) upon binding the RNA. Furthermore, we show that these techniques allow the comparison of binding affinities for a series of ions to this site. The binding affinities for ions at the G5 site correlates linearly with the function Z(2)/r of the aqua ion (where Z is the charge and r is the radius of the ion). CONCLUSIONS This study compares the crystallographic nature of the G5 metal-binding site with solution measurements and gives a clearer picture of the coordination environment of this ion. These results provide one of the best characterized metal-binding sites from a ribozyme, so we use this information to compare the RNA site with that of typical metalloproteins.
Journal of Bacteriology | 2010
Ho Ching Tiffany Tsui; Dhriti Mukherjee; Valerie A. Ray; Lok To Sham; Andrew L. Feig; Malcolm E. Winkler
We report a search for small RNAs (sRNAs) in the low-GC, gram-positive human pathogen Streptococcus pneumoniae. Based on bioinformatic analyses by Livny et al. (J. Livny, A. Brencic, S. Lory, and M. K. Waldor, Nucleic Acids Res. 34:3484-3493, 2006), we tested 40 candidates by Northern blotting and confirmed the expression of nine new and one previously reported (CcnA) sRNAs in strain D39. CcnA is one of five redundant sRNAs reported by Halfmann et al. (A. Halfmann, M. Kovacs, R. Hakenbeck, and R. Bruckner, Mol. Microbiol. 66:110-126, 2007) that are positively controlled by the CiaR response regulator. We characterized 3 of these 14 sRNAs: Spd-sr17 (144 nucleotides [nt]; decreased in stationary phase), Spd-sr37 (80 nt; strongly expressed in all growth phases), and CcnA (93 nt; induced by competence stimulatory peptide). Spd-sr17 and CcnA likely fold into structures containing single-stranded regions between hairpin structures, whereas Spd-sr37 forms a base-paired structure. Primer extension mapping and ectopic expression in deletion/insertion mutants confirmed the independent expression of the three sRNAs. Microarray analyses indicated that insertion/deletion mutants in spd-sr37 and ccnA exerted strong cis-acting effects on the transcription of adjacent genes, indicating that these sRNA regions are also cotranscribed in operons. Deletion or overexpression of the three sRNAs did not cause changes in growth, certain stress responses, global transcription, or virulence. Constitutive ectopic expression of CcnA reversed some phenotypes of D39 Delta ciaR mutants, but attempts to link CcnA to -E to comC as a target were inconclusive in ciaR(+) strains. These results show that S. pneumoniae, which lacks known RNA chaperones, expresses numerous sRNAs, but three of these sRNAs do not strongly affect common phenotypes or transcription patterns.
PLOS ONE | 2010
Nilshad Salim; Andrew L. Feig
Background To survive, bacteria must be able to adapt to environmental stresses. Small regulatory RNAs have been implicated as intermediates in a variety of stress-response pathways allowing dynamic gene regulation. The RNA binding protein Hfq facilitates this process in many cases, helping sRNAs base pair with their target mRNAs and initiate gene regulation. Although Hfq has been identified as a critical component in many RNPs, the manner by which Hfq controls these interactions is not known. Methodology/Principal Findings To test the requirement of Hfq in these mRNA-sRNA complexes, the OxyS-fhlA system was used as a model. OxyS is induced in response to oxidative stress and down regulates the translation of fhlA, a gene encoding a transcriptional activator for formate metabolism. Biophysical characterization of this system previously used a minimal construct of the fhlA mRNA which inadvertently removed a critical element within the leader sequence of this mRNA that effected thermodynamics and kinetics for the interaction with Hfq. Conclusions/Significance Herein, we report thermodynamic, kinetic and structural mapping studies during binary and ternary complex formation between Hfq, OxyS and fhlA mRNA. Hfq binds fhlA mRNA using both the proximal and distal surfaces and stimulates association kinetics between the sRNA and mRNA but remains bound to fhlA forming a ternary complex. The upstream Hfq binding element within fhlA is similar to (ARN)x elements recently identified in other mRNAs regulated by Hfq. This work leads to a kinetic model for the dynamics of these complexes and the regulation of gene expression by bacterial sRNAs.
Methods | 2009
Nilshad Salim; Andrew L. Feig
Isothermal titration calorimetry (ITC) is a fast and robust method to study the physical basis of molecular interactions. A single well-designed experiment can provide complete thermodynamic characterization of a binding reaction, including K(a), DeltaG, DeltaH, DeltaS and reaction stoichiometry (n). Repeating the experiment at different temperatures allows determination of the heat capacity change (DeltaC(P)) of the interaction. Modern calorimeters are sensitive enough to probe even weak biological interactions making ITC a very popular method among biochemists. Although ITC has been applied to protein studies for many years, it is becoming widely applicable in RNA biochemistry as well, especially in studies which involve RNA folding and RNA interactions with small molecules, proteins and with other RNAs. This review focuses on best practices for planning, designing and executing effective ITC experiments when one or more of the reactants is an RNA.
Nucleic Acids Research | 2012
Nilshad Salim; Martha Faner; Jane Philip; Andrew L. Feig
Hfq is an important RNA-binding protein that helps bacteria adapt to stress. Its primary function is to promote pairing between trans-acting small non-coding RNAs (sRNAs) and their target mRNAs. Identification of essential Hfq-binding motifs in up-stream regions of rpoS and fhlA led us to ask the question whether these elements are a common occurrence among other Hfq-dependent mRNAs as well. Here, we confirm the presence of a similar (ARN)x motif in glmS RNA, a gene controlled by two sRNAs (GlmZ and GlmY) in an Hfq-dependent manner. GlmZ represents a canonical sRNA:mRNA pairing system, whereas GlmY is non-canonical, interfacing with the RNA processing protein YhbJ. We show that glmS interacts with both Hfq-binding surfaces in the absence of sRNAs. Even though two (ARN)x motifs are present, using a glmS:gfp fusion system, we determined that only one specific (ARN)x element is essential for regulation. Furthermore, we show that residues 66–72 in the C-terminal extension of Escherichia coli Hfq are essential for activation of GlmS expression by GlmY, but not with GlmZ. This result shows that the C-terminal extension of Hfq may be required for some forms of non-canonical sRNA regulation involving ancillary components such as additional RNAs or proteins.
Biochemistry and Molecular Biology Education | 2002
Andrew L. Feig; Evelyn Jabri
The field of bioinformatics is developing faster than most biochemistry textbooks can adapt. Supplementing the undergraduate biochemistry curriculum with data‐mining exercises is an ideal way to expose the students to the common databases and tools that take advantage of this vast repository of biochemical information. An integrated collection of exercises based on pet proteins has been assembled. The exercises described are applicable to either a lecture or laboratory format and require only basic desktop computers, an Internet connection, a current web browser, and the free Chime plug‐in module. In an open‐ended, inquiry‐based format, the assignments ask students to explore concepts such as the relative information content of the different biopolymers, the relationship between primary sequence and tertiary structure, and how sequence conservation can be used to find an enzyme active site.