Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew L. Lovering is active.

Publication


Featured researches published by Andrew L. Lovering.


Science | 2007

Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis.

Andrew L. Lovering; Liza De Castro; Daniel Lim; Natalie C. J. Strynadka

Peptidoglycan glycosyltransferases (GTs) catalyze the polymerization step of cell-wall biosynthesis, are membrane-bound, and are highly conserved across all bacteria. Long considered the “holy grail” of antibiotic research, they represent an essential and easily accessible drug target for antibiotic-resistant bacteria, including methicillin-resistant Staphylococcus aureus. We have determined the 2.8 angstrom structure of a bifunctional cell-wall cross-linking enzyme, including its transpeptidase and GT domains, both unliganded and complexed with the substrate analog moenomycin. The peptidoglycan GTs adopt a fold distinct from those of other GT classes. The structures give insight into critical features of the catalytic mechanism and key interactions required for enzyme inhibition.


Annual Review of Biochemistry | 2012

Structural Perspective of Peptidoglycan Biosynthesis and Assembly

Andrew L. Lovering; Susan S. Safadi; Natalie C. J. Strynadka

The peptidoglycan biosynthetic pathway is a critical process in the bacterial cell and is exploited as a target for the design of antibiotics. This pathway culminates in the production of the peptidoglycan layer, which is composed of polymerized glycan chains with cross-linked peptide substituents. This layer forms the major structural component of the protective barrier known as the cell wall. Disruption in the assembly of the peptidoglycan layer causes a weakened cell wall and subsequent bacterial lysis. With bacteria responsible for both properly functioning human health (probiotic strains) and potentially serious illness (pathogenic strains), a delicate balance is necessary during clinical intervention. Recent research has furthered our understanding of the precise molecular structures, mechanisms of action, and functional interactions involved in peptidoglycan biosynthesis. This research is helping guide our understanding of how to capitalize on peptidoglycan-based therapeutics and, at a more fundamental level, of the complex machinery that creates this critical barrier for bacterial survival.


Journal of Biological Chemistry | 2005

Structural and mechanistic studies of Escherichia coli nitroreductase with the antibiotic nitrofurazone. Reversed binding orientations in different redox states of the enzyme.

Paul R. Race; Andrew L. Lovering; Richard M. Green; Abdelmijd Ossor; Scott A. White; Peter F. Searle; Christopher J. Wrighton; Eva I. Hyde

The antibiotics nitrofurazone and nitrofurantoin are used in the treatment of genitourinary infections and as topical antibacterial agents. Their action is dependent upon activation by bacterial nitroreductase flavoproteins, including the Escherichia coli nitroreductase (NTR). Here we show that the products of reduction of these antibiotics by NTR are the hydroxylamine derivatives. We show that the reduction of nitrosoaromatics is enzyme-catalyzed, with a specificity constant ∼10,000-fold greater than that of the starting nitro compounds. This suggests that the reduction of nitro groups proceeds through two successive, enzyme-mediated reactions and explains why the nitroso intermediates are not observed. The global reaction rate for nitrofurazone determined in this study is over 10-fold higher than that previously reported, suggesting that the enzyme is much more active toward nitroaromatics than previously estimated. Surprisingly, in the crystal structure of the oxidized NTR-nitrofurazone complex, nitrofurazone is oriented with its amide group, rather than the nitro group to be reduced, positioned over the reactive N5 of the FMN cofactor. Free acetate, which acts as a competitive inhibitor with respect to NADH, binds in a similar orientation. We infer that the orientation of bound nitrofurazone depends upon the redox state of the enzyme. We propose that the charge distribution on the FMN rings, which alters upon reduction, is an important determinant of substrate binding and reactivity in flavoproteins with broad substrate specificity.


Cancer Research | 2004

Crystal structures of prostaglandin D(2) 11-ketoreductase (AKR1C3) in complex with the nonsteroidal anti-inflammatory drugs flufenamic acid and indomethacin.

Andrew L. Lovering; Jon P. Ride; Christopher M. Bunce; Julian C. Desmond; Stephen M. Cummings; Scott A. White

It is becoming increasingly well established that nonsteroidal anti-inflammatory drugs (NSAID) protect against tumors of the gastrointestinal tract and that they may also protect against a variety of other tumors. These activities have been widely attributed to the inhibition of cylooxygenases (COX) and, in particular, COX-2. However, several observations have indicated that other targets may be involved. Besides targeting COX, certain NSAID also inhibit enzymes belonging to the aldo-keto reductase (AKR) family, including AKR1C3. We have demonstrated previously that overexpression of AKR1C3 acts to suppress cell differentiation and promote proliferation in myeloid cells. However, this enzyme has a broad tissue distribution and therefore represents a novel candidate for the target of the COX-independent antineoplastic actions of NSAID. Here we report on the X-ray crystal structures of AKR1C3 complexed with the NSAID indomethacin (1.8 Å resolution) or flufenamic acid (1.7 Å resolution). One molecule of indomethacin is bound in the active site, whereas flufenamic acid binds to both the active site and the β-hairpin loop, at the opposite end of the central β-barrel. Two other crystal structures (1.20 and 2.1 Å resolution) show acetate bound in the active site occupying the proposed oxyanion hole. The data underline AKR1C3 as a COX-independent target for NSAID and will provide a structural basis for the future development of new cancer therapies with reduced COX-dependent side effects.


Journal of Biological Chemistry | 2004

Structural and biochemical identification of a novel bacterial oxidoreductase.

Lodovica Loschi; Stephen J. Brokx; Tanya L. Hills; Glen Zhang; Michela G. Bertero; Andrew L. Lovering; Joel H. Weiner; Natalie C. J. Strynadka

By using a bioinformatics screen of the Escherichia coli genome for potential molybdenum-containing enzymes, we have identified a novel oxidoreductase conserved in the majority of Gram-negative bacteria. The identified operon encodes for a proposed heterodimer, YedYZ in Escherichia coli, consisting of a soluble catalytic subunit termed YedY, which is likely anchored to the membrane by a heme-containing trans-membrane subunit termed YedZ. YedY is uniquely characterized by the presence of one molybdenum molybdopterin not conjugated by an additional nucleotide, and it represents the only molybdoenzyme isolated from E. coli characterized by the presence of this cofactor form. We have further characterized the catalytic subunit YedY in both the molybdenum- and tungsten-substituted forms by using crystallographic analysis. YedY is very distinct in overall architecture from all known bacterial reductases but does show some similarity with the catalytic domain of the eukaryotic chicken liver sulfite oxidase. However, the strictly conserved residues involved in the metal coordination sphere and in the substrate binding pocket of YedY are strikingly different from that of chicken liver sulfite oxidase, suggesting a catalytic activity more in keeping with a reductase than that of a sulfite oxidase. Preliminary kinetic analysis of YedY with a variety of substrates supports our proposal that YedY and its many orthologues may represent a new type of membrane-associated bacterial reductase.


Clinical and Experimental Pharmacology and Physiology | 2004

NITROREDUCTASE: A PRODRUG‐ACTIVATING ENZYME FOR CANCER GENE THERAPY

Peter F. Searle; Ming-Jen Chen; Longqin Hu; Paul R. Race; Andrew L. Lovering; Jane I. Grove; Christopher P. Guise; Mansooreh Jaberipour; Nicholas D. James; Vivien Mautner; Lawrence S. Young; David Kerr; Andrew Mountain; Scott A. White; Eva I. Hyde

1. The prodrug CB1954 (5‐(aziridin‐1‐yl)‐2,4‐dinitrobenzamide) is activated by Escherichia coli nitroreductase (NTR) to a potent DNA‐crosslinking agent.


Journal of Synchrotron Radiation | 2005

Phasing in the presence of radiation damage

Raimond B. G. Ravelli; Max H. Nanao; Andrew L. Lovering; Scott A. White; Sean McSweeney

In the accurate estimation of small signals, redundancy of observations is often seen as an essential tool for the experimenter. This is particularly true during macromolecular structure determination by single-wavelength anomalous dispersion (SAD), where the exploitable signal can be less than a few percent. At the most intense undulator synchrotron beamlines, the effect of radiation damage can be such that all usable signal is obscured. Here the magnitude of this effect in experiments performed at the Se K-edge is quantified. Six successive data sets were collected on the same crystal, interspersed with two exposures to the X-ray beam during which data were not collected. It is shown that the very first data set has excellent phasing statistics, whereas these statistics degrade for the later data sets. Merging several data sets into one, highly redundant, data set only gave moderate improvements as a result of the presence of radiation damage. Part of the damage could be corrected for using a linear interpolation scheme. Interpolation of the data to a low-dose as well as to a high-dose data set allowed us to combine the SAD method with the radiation-damage induced phasing (RIP) technique, which further improved the experimental phases, especially after density modification. Some recommendations are given on how to mitigate the effect of radiation damage during structure determination.


Journal of Molecular Biology | 2008

Identification of dynamic structural motifs involved in peptidoglycan glycosyltransfer.

Andrew L. Lovering; Liza De Castro; Natalie C. J. Strynadka

We have determined the structure of a new form of the bifunctional peptidoglycan glycosyltransferase (GT)/transpeptidase penicillin-binding protein 2 from the pathogen Staphylococcus aureus. We observe several previously unstructured regions of the GT substrate-binding pockets, including a pi-bulge in the outer helix that may be responsible for the conformational flexibility of active-site motifs required for transfer of product to the donor binding site during processive rounds of peptidoglycan polymerization. The identification of a beta-hairpin in the usually unstructured region of the fold shares local structural homology to that of an exomuramidase, heightening comparisons between this biosynthetic enzyme and lytic peptidoglycan transglycosylases. This new form also shows remarkable interdomain flexibility, causing the linker region of the fold to project into the GT active site. This self-interaction may have significant consequences for the regulation of polymerization activity. The derived information is used to build a catalytic model of both donor and acceptor glycolipid substrates.


Mbio | 2011

The Structure of an Unconventional HD-GYP Protein from Bdellovibrio Reveals the Roles of Conserved Residues in this Class of Cyclic-di-GMP Phosphodiesterases

Andrew L. Lovering; Michael J. Capeness; Carey Lambert; Laura Hobley; Renee Elizabeth Sockett

ABSTRACT Cyclic-di-GMP is a near-ubiquitous bacterial second messenger that is important in localized signal transmission during the control of various processes, including virulence and switching between planktonic and biofilm-based lifestyles. Cyclic-di-GMP is synthesized by GGDEF diguanylate cyclases and hydrolyzed by EAL or HD-GYP phosphodiesterases, with each functional domain often appended to distinct sensory modules. HD-GYP domain proteins have resisted structural analysis, but here we present the first structural representative of this family (1.28 Å), obtained using the unusual Bd1817 HD-GYP protein from the predatory bacterium Bdellovibrio bacteriovorus. Bd1817 lacks the active-site tyrosine present in most HD-GYP family members yet remains an excellent model of their features, sharing 48% sequence similarity with the archetype RpfG. The protein structure is highly modular and thus provides a basis for delineating domain boundaries in other stimulus-dependent homologues. Conserved residues in the HD-GYP family cluster around a binuclear metal center, which is observed complexed to a molecule of phosphate, providing information on the mode of hydroxide ion attack on substrate. The fold and active site of the HD-GYP domain are different from those of EAL proteins, and restricted access to the active-site cleft is indicative of a different mode of activity regulation. The region encompassing the GYP motif has a novel conformation and is surface exposed and available for complexation with binding partners, including GGDEF proteins. IMPORTANCE It is becoming apparent that many bacteria use the signaling molecule cyclic-di-GMP to regulate a variety of processes, most notably, transitions between motility and sessility. Importantly, this regulation is central to several traits implicated in chronic disease (adhesion, biofilm formation, and virulence gene expression). The mechanisms of cyclic-di-GMP synthesis via GGDEF enzymes and hydrolysis via EAL enzymes have been suggested by the analysis of several crystal structures, but no information has been available to date for the unrelated HD-GYP class of hydrolases. Here we present the multidomain structure of an unusual member of the HD-GYP family from the predatory bacterium Bdellovibrio bacteriovorus and detail the features that distinguish it from the wider structural family of general HD fold hydrolases. The structure reveals how a binuclear iron center is formed from several conserved residues and provides a basis for understanding HD-GYP family sequence requirements for c-di-GMP hydrolysis. It is becoming apparent that many bacteria use the signaling molecule cyclic-di-GMP to regulate a variety of processes, most notably, transitions between motility and sessility. Importantly, this regulation is central to several traits implicated in chronic disease (adhesion, biofilm formation, and virulence gene expression). The mechanisms of cyclic-di-GMP synthesis via GGDEF enzymes and hydrolysis via EAL enzymes have been suggested by the analysis of several crystal structures, but no information has been available to date for the unrelated HD-GYP class of hydrolases. Here we present the multidomain structure of an unusual member of the HD-GYP family from the predatory bacterium Bdellovibrio bacteriovorus and detail the features that distinguish it from the wider structural family of general HD fold hydrolases. The structure reveals how a binuclear iron center is formed from several conserved residues and provides a basis for understanding HD-GYP family sequence requirements for c-di-GMP hydrolysis.


Journal of Biological Chemistry | 2012

Structural Insights into the Anti-methicillin-resistant Staphylococcus aureus (MRSA) Activity of Ceftobiprole

Andrew L. Lovering; Michael Gretes; Susan S. Safadi; Franck Danel; Liza De Castro; Malcolm G. P. Page; Natalie C. J. Strynadka

Background: Ceftobiprole is a β-lactam recently developed to treat methicillin-resistant Staphylococcus aureus (MRSA) by inhibiting its antibiotic resistance determinant PBP2a. Results: The PBP2a-ceftobiprole complex reveals an extensive binding interface with two distinct inhibitor conformations. Conclusion: Ceftobiprole inhibits PBP2a via increased stabilization of the Michaelis complex followed by acylation. Significance: We report the first structure of a resistant PBP inhibited by a competent anti-MRSA β-lactam. Methicillin-resistant Staphylococcus aureus (MRSA) is an antibiotic-resistant strain of S. aureus afflicting hospitals and communities worldwide. Of greatest concern is its development of resistance to current last-line-of-defense antibiotics; new therapeutics are urgently needed to combat this pathogen. Ceftobiprole is a recently developed, latest generation cephalosporin and has been the first to show activity against MRSA by inhibiting essential peptidoglycan transpeptidases, including the β-lactam resistance determinant PBP2a, from MRSA. Here we present the structure of the complex of ceftobiprole bound to PBP2a. This structure provides the first look at the molecular details of an effective β-lactam-resistant PBP interaction, leading to new insights into the mechanism of ceftobiprole efficacy against MRSA.

Collaboration


Dive into the Andrew L. Lovering's collaboration.

Top Co-Authors

Avatar

Natalie C. J. Strynadka

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Scott A. White

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Eva I. Hyde

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian T. Cadby

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carey Lambert

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Jane I. Grove

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge