Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Lockhart is active.

Publication


Featured researches published by Andrew Lockhart.


The FASEB Journal | 2003

PPARγ activation enhances cell surface ENaCα via up-regulation of SGK1 in human collecting duct cells

Guizhu Hong; Andrew Lockhart; Bill Davis; Hassan Rahmoune; Sharon Baker; Liang Ye; Paul D. Thompson; Yaping Shou; Kevin M. O'Shaughnessy; Pierre Ronco; John Brown

Peroxisome proliferator‐activated receptor gamma (PPARγ) is a ligand‐dependent transcription factor that belongs to the nuclear receptor family that plays a critical role in adipocyte differentiation and lipid metabolism. Here we report for the first time that PPARγ is expressed in human renal cortical collecting ducts (CCD), segments of the nephor involved in regulation of sodium and water homeostasis via action of the epithelial sodium channel (ENaC). ENaC activity is regulated by the hormones aldosterone and insulin, primarily through co‐ordinate actions on serum and glucocorticoid regulated kinase 1 (SGK1). We show that SGK1 activity is stimulated by treatment of a human CCD cell line with PPARγ agonists, paralleled by an increase in SGK1 mRNA that is abolished by pretreatment with a specific PPARγ antagonist, and that this leads to increased levels of cell surface ENaCα. Electrophoretic mobility shift assays suggest that these effects are caused by binding of PPARγ to a specific response element in the SGK1 promoter. Our results identify SGK1 as a target for PPARγ and suggest a novel role for PPARγ in regulation of sodium re‐absorption in the CCD via stimulation of ENaC activity. This pathway may play a role in sodium retention caused by activation of PPARγ in man.


Journal of Neurochemistry | 2009

Interaction of the amyloid imaging tracer FDDNP with hallmark Alzheimer’s disease pathologies

Paul W. Thompson; Liang Ye; Jennifer L. Morgenstern; Lucia I. Sue; Thomas G. Beach; Duncan J. Judd; Vincenzo Libri; Andrew Lockhart

The distinctive cortical uptake of the tracer 18F‐FDDNP (2‐(1‐{6‐[(2‐fluoroethyl(methyl)amino]‐2‐naphthyl}ethylidene)malononitrile) in Alzheimer’s disease (AD) is believed to be because of its binding to both neurofibrillary tangles (NFTs) and highly fibrillar senile plaques. We therefore investigated the binding of a tracer concentration of 3H‐FDDNP to brain sections containing AD hallmark pathologies. Semi‐adjacent sections were labelled with 3H‐PIB (Pittsburgh compound‐B, 2‐[4′‐(methylamino)phenyl]‐6‐hydroxybenzothiazole) and 14C‐SB13 (4‐N‐methylamino‐4′‐hydroxystilbene) for comparison. Neocortical sections containing widespread senile plaques and cerebrovascular amyloid angiopathy, produced a sparse and weak labelling following incubation with 3H‐FDDNP. Furthermore, in sections containing NFTs, there was no overt labelling of the pathology by 3H‐FDDNP. In contrast, sections labelled with 3H‐PIB displayed extensive labelling of diffuse plaques, classical plaques, cerebrovascular amyloid angiopathy and NFTs. 14C‐SB13 produced a broadly similar binding pattern to PIB. Radioligand binding assays employing in vitro generated amyloid‐β peptide fibrils demonstrated a ∼10‐fold reduced affinity for 3H‐FDDNP (85.0 ± 2.0 nM) compared with 3H‐PIB (8.5 ± 1.3 nM). These data provide an alternative mechanistic explanation for the observed low cortical uptake of 18F‐FDDNP in AD; in that the ligand is only weakly retained by the hallmark neuropathology because of its low affinity for amyloid structures.


Journal of Biological Chemistry | 2005

Delineation of positron emission tomography imaging agent binding sites on β-amyloid peptide fibrils

Liang Ye; Jennifer L. Morgenstern; Antony D. Gee; Guizhu Hong; John Brown; Andrew Lockhart

A range of imaging agents for use in the positron emission tomography of Alzheimers disease is currently under development. Each of the main compound classes, derived from thioflavin T (PIB), Congo Red (BSB), and aminonaphthalene (FDDNP) are believed to bind to mutually exclusive sites on the β-amyloid (Aβ) peptide fibrils. We recently reported the presence of three classes of binding sites (BS1, BS2, BS3) on the Aβ fibrils for thioflavin T derivatives and now extend these findings to demonstrate that these sites are also able to accommodate ligands from the other chemotype classes. The results from competition assays using [3H]Me-BTA-1 (BS3 probe) indicated that both PIB and FDDNP were able to displace the radioligand with Ki values of 25 and 42 nm, respectively. BSB was unable to displace the radioligand tracer from the Aβ fibrils. In contrast, each of the compounds examined were able to displace thioflavin T (BS1 probe) from the Aβ fibrils when evaluated in a fluorescence competition assay with Ki values for PIB, FDDNP, and BSB of 1865, 335, and 600 nm, respectively. Finally, the Kd values for FDDNP and BSB binding to Aβ fibrils were directly determined by monitoring the increases in the ligand intrinsic fluorescence, which were 290 and 104 nm, respectively. The results from these assays indicate that (i) the three classes of thioflavin T binding sites are able to accommodate a wide range of chemotype structures, (ii) BSB binds to two sites on the Aβ fibrils, one of which is BS2, and the other is distinct from the thioflavin T derivative binding sites, and (iii) there is no independent binding site on the fibrils for FDDNP, and the ligand binds to both the BS1 and BS3 sites with significantly lower affinities than previously reported.


Journal of Biological Chemistry | 2010

Cerebrospinal Fluid Steroidomics: Are Bioactive Bile Acids Present in Brain?

Michael Ogundare; Spyridon Theofilopoulos; Andrew Lockhart; Leslie J. Hall; Ernest Arenas; Jan Sjövall; A. Gareth Brenton; Yuqin Wang; William J. Griffiths

In this study we have profiled the free sterol content of cerebrospinal fluid by a combination of charge tagging and liquid chromatography-tandem mass spectrometry. Surprisingly, the most abundant cholesterol metabolites were found to be C27 and C24 intermediates of the bile acid biosynthetic pathways with structures corresponding to 7α-hydroxy-3-oxocholest-4-en-26-oic acid (7.170 ± 2.826 ng/ml, mean ± S.D., six subjects), 3β-hydroxycholest-5-en-26-oic acid (0.416 ± 0.193 ng/ml), 7α,x-dihydroxy-3-oxocholest-4-en-26-oic acid (1.330 ± 0.543 ng/ml), and 7α-hydroxy-3-oxochol-4-en-24-oic acid (0.172 ± 0.085 ng/ml), and the C26 sterol 7α-hydroxy-26-norcholest-4-ene-3,x-dione (0.204 ± 0.083 ng/ml), where x is an oxygen atom either on the CD rings or more likely on the C-17 side chain. The ability of intermediates of the bile acid biosynthetic pathways to activate the liver X receptors (LXRs) and the farnesoid X receptor was also evaluated. The acidic cholesterol metabolites 3β-hydroxycholest-5-en-26-oic acid and 3β,7α-dihydroxycholest-5-en-26-oic acid were found to activate LXR in a luciferase assay, but the major metabolite identified in this study, i.e. 7α-hydroxy-3-oxocholest-4-en-26-oic acid, was not an LXR ligand. 7α-Hydroxy-3-oxocholest-4-en-26-oic acid is formed from 3β,7α-dihydroxycholest-5-en-26-oic acid in a reaction catalyzed by 3β-hydroxy-Δ5-C27-steroid dehydrogenase (HSD3B7), which may thus represent a deactivation pathway of LXR ligands in brain. Significantly, LXR activation has been found to reduce the symptoms of Alzheimer disease (Fan, J., Donkin, J., and Wellington C. (2009) Biofactors 35, 239–248); thus, cholesterol metabolites may play an important role in the etiology of Alzheimer disease.


Journal of Neurochemistry | 2008

In vitro high affinity α-synuclein binding sites for the amyloid imaging agent PIB are not matched by binding to Lewy bodies in postmortem human brain

Liang Ye; Ana Velasco; Graham Fraser; Thomas G. Beach; Lucia I. Sue; Tracy Osredkar; Vincenzo Libri; Maria Grazia Spillantini; Michel Goedert; Andrew Lockhart

Amyloid containing deposits are a defining neuropathological feature of a wide range of dementias and movement disorders. The positron emission tomography tracer PIB (Pittsburgh Compound‐B, 2‐[4′‐(methylamino)phenyl]‐6‐hydroxybenzothiazole) was developed to target senile plaques, an amyloid containing pathological hallmark of Alzheimer’s disease, formed from the amyloid‐β peptide. Despite the fact that PIB was developed from the pan‐amyloid staining dye thioflavin T, no detailed characterisation of its interaction with other amyloid structures has been reported. In this study, we demonstrate the presence of a high affinity binding site (Kd∼4 nM) for benzothiazole derivatives, including [3H]‐PIB, on α‐synuclein (AS) filaments generated in vitro, and further characterise this binding site through the use of radioligand displacement assays employing 4‐N‐methylamino‐4′‐hydroxystilbene (SB13) (Ki = 87 nM) and 2‐(1‐{6‐[(2‐fluoroethyl(methyl)amino]‐2‐naphthyl}ethylidene)malononitrile (FDDNP) (Ki = 210 nM). Despite the presence of a high‐affinity binding site on AS filaments, no discernible interaction of [3H]‐PIB was detected with amygdala sections from Parkinson’s disease cases containing frequent AS‐immunoreactive Lewy bodies and related neurities. These findings suggest that the density and/or accessibility of AS binding sites in vivo are significantly less than those associated with amyloid‐β peptide lesions. Lewy bodies pathology is therefore unlikely to contribute significantly to the retention of PIB in positron emission tomography imaging studies.


Biomarkers in Medicine | 2012

Reference measurement procedures for Alzheimer’s disease cerebrospinal fluid biomarkers: definitions and approaches with focus on amyloid β42

Niklas Mattsson; Ingrid Zegers; Ulf Andreasson; Maria Bjerke; Marinus A. Blankenstein; Robert Bowser; Maria C. Carrillo; Johan Gobom; Theresa Heath; Rand Jenkins; Andreas Jeromin; June Kaplow; Daniel Kidd; Omar Laterza; Andrew Lockhart; Michael P. Lunn; Robert Martone; Kevin Mills; Josef Pannee; Marianne Ratcliffe; Leslie M. Shaw; Adam J. Simon; Holly Soares; Charlotte E. Teunissen; Marcel M. Verbeek; Robert M. Umek; Hugo Vanderstichele; Henrik Zetterberg; Kaj Blennow; Erik Portelius

Cerebrospinal fluid (CSF) biomarkers for Alzheimers disease (AD) are increasingly used in clinical settings, research and drug trials. However, their broad-scale use on different technology platforms is hampered by the lack of standardization at the level of sample handling, determination of concentrations of analytes and the absence of well-defined performance criteria for in vitro diagnostic or companion diagnostic assays, which influences the apparent concentration of the analytes measured and the subsequent interpretation of the data. There is a need for harmonization of CSF AD biomarker assays that can reliably, across centers, quantitate CSF biomarkers with high analytical precision, selectivity and stability over long time periods. In this position paper, we discuss reference procedures for the measurement of CSF AD biomarkers, especially amyloid β42 and tau. We describe possible technical approaches, focusing on a selected reaction monitoring mass spectrometry assay as a candidate reference method for quantification of CSF amyloid β42.


Nuclear Medicine and Biology | 2003

The peripheral benzodiazepine receptor ligand PK11195 binds with high affinity to the acute phase reactant alpha1-acid glycoprotein: implications for the use of the ligand as a CNS inflammatory marker.

Andrew Lockhart; Bill Davis; Julian C Matthews; Hassan Rahmoune; Guizhu Hong; Antony D. Gee; David L. Earnshaw; John Brown

The peripheral benzodiazepine receptor ligand PK11195 has been used as an in vivo marker of neuroinflammation in positron emission tomography studies in man. One of the methodological issues surrounding the use of the ligand in these studies is the highly variable kinetic behavior of [(11)C]PK11195 in plasma. We therefore undertook a study to measure the binding of [(3)H]PK11195 to whole human blood and found a low level of binding to blood cells but extensive binding to plasma proteins. Binding assays using [(3)H]PK11195 and purified human plasma proteins demonstrated a strong binding to alpha1-acid glycoprotein (AGP) and a much weaker interaction with albumin. Immunodepletion of AGP from plasma resulted in the loss of plasma [(3)H]PK11195 binding demonstrating: (i) the specificity of the interaction and (ii) that AGP is the major plasma protein to which PK11195 binds with high affinity. PK11195 was able to displace fluorescein-dexamethasone from AGP with IC(50) of <1.2 microM, consistent with a high affinity interaction. These findings are important for understanding the behavior of the ligand in positron emission tomography studies for three reasons. Firstly, AGP is an acute phase protein and its levels will vary during infection and pathological inflammatory diseases such as multiple sclerosis. This could significantly alter the free plasma concentrations of the ligand and contribute to its variable kinetic behavior. Secondly, AGP and AGP-bound ligand may contribute to the access of [(11)C]PK11195 to the brain parenchyma in diseases with blood brain barrier breakdown. Finally, local synthesis of AGP at the site of brain injury may contribute the pattern of [(11)C]PK11195 binding observed in neuroinflammatory diseases.


Journal of Clinical Investigation | 2014

Cholestenoic acids regulate motor neuron survival via liver X receptors

Spyridon Theofilopoulos; William J. Griffiths; Peter J. Crick; Shanzheng Yang; Anna Meljon; Michael Ogundare; Satish Srinivas Kitambi; Andrew Lockhart; Karin Tuschl; Peter Clayton; Andrew Morris; Adelaida Martinez; M. Ashwin Reddy; Andrea Martinuzzi; Maria Teresa Bassi; Akira Honda; Tatsuki Mizuochi; Akihiko Kimura; Hiroshi Nittono; Giuseppe De Michele; Rosa Carbone; Chiara Criscuolo; Joyce L.W. Yau; Jonathan R. Seckl; Rebecca Schüle; Ludger Schöls; Andreas W. Sailer; Jens Kuhle; Matthew J. Fraidakis; Jan Åke Gustafsson

Cholestenoic acids are formed as intermediates in metabolism of cholesterol to bile acids, and the biosynthetic enzymes that generate cholestenoic acids are expressed in the mammalian CNS. Here, we evaluated the cholestenoic acid profile of mammalian cerebrospinal fluid (CSF) and determined that specific cholestenoic acids activate the liver X receptors (LXRs), enhance islet-1 expression in zebrafish, and increase the number of oculomotor neurons in the developing mouse in vitro and in vivo. While 3β,7α-dihydroxycholest-5-en-26-oic acid (3β,7α-diHCA) promoted motor neuron survival in an LXR-dependent manner, 3β-hydroxy-7-oxocholest-5-en-26-oic acid (3βH,7O-CA) promoted maturation of precursors into islet-1+ cells. Unlike 3β,7α-diHCA and 3βH,7O-CA, 3β-hydroxycholest-5-en-26-oic acid (3β-HCA) caused motor neuron cell loss in mice. Mutations in CYP7B1 or CYP27A1, which encode enzymes involved in cholestenoic acid metabolism, result in different neurological diseases, hereditary spastic paresis type 5 (SPG5) and cerebrotendinous xanthomatosis (CTX), respectively. SPG5 is characterized by spastic paresis, and similar symptoms may occur in CTX. Analysis of CSF and plasma from patients with SPG5 revealed an excess of the toxic LXR ligand, 3β-HCA, while patients with CTX and SPG5 exhibited low levels of the survival-promoting LXR ligand 3β,7α-diHCA. Moreover, 3β,7α-diHCA prevented the loss of motor neurons induced by 3β-HCA in the developing mouse midbrain in vivo.Our results indicate that specific cholestenoic acids selectively work on motor neurons, via LXR, to regulate the balance between survival and death.


Alzheimer's Research & Therapy | 2014

Imaging as a biomarker in drug discovery for Alzheimer's disease: is MRI a suitable technology?

Emilio Merlo Pich; Andreas Jeromin; Giovanni B. Frisoni; Derek L. G. Hill; Andrew Lockhart; Mark Schmidt; Martin Turner; Stefania Mondello; William Z. Potter

This review provides perspectives on the utility of magnetic resonance imaging (MRI) as a neuroimaging approach in the development of novel treatments for Alzheimer’s disease. These considerations were generated in a roundtable at a recent Wellcome Trust meeting that included experts from academia and industry. It was agreed that MRI, either structural or functional, could be used as a diagnostic, for assessing worsening of disease status, for monitoring vascular pathology, and for stratifying clinical trial populations. It was agreed also that MRI implementation is in its infancy, requiring more evidence of association with the disease states, test-retest data, better standardization across multiple clinical sites, and application in multimodal approaches which include other imaging technologies, such as positron emission tomography, electroencephalography, and magnetoencephalography.


Alzheimer's Research & Therapy | 2012

Plasma lipoprotein-associated phospholipase A2 activity in Alzheimer's disease, amnestic mild cognitive impairment, and cognitively healthy elderly subjects: a cross-sectional study

Julie E. Davidson; Andrew Lockhart; Leslie Amos; Heide A. Stirnadel-Farrant; Vincent Mooser; Marc Sollberger; Axel Regeniter; Andreas U. Monsch; Michael C. Irizarry

IntroductionLipoprotein-associated phospholipase A2 (Lp-PLA2) is a circulating enzyme with pro-inflammatory and oxidative activities associated with cardiovascular disease and ischemic stroke. While high plasma Lp-PLA2 activity was reported as a risk factor for dementia in the Rotterdam study, no association between Lp-PLA2 mass and dementia or Alzheimers disease (AD) was detected in the Framingham study. The objectives of the current study were to explore the relationship of plasma Lp-PLA2 activity with cognitive diagnoses (AD, amnestic mild cognitive impairment (aMCI), and cognitively healthy subjects), cardiovascular markers, cerebrospinal fluid (CSF) markers of AD, and apolipoprotein E (APOE) genotype.MethodsSubjects with mild AD (n = 78) and aMCI (n = 59) were recruited from the Memory Clinic, University Hospital, Basel, Switzerland; cognitively healthy subjects (n = 66) were recruited from the community. Subjects underwent standardised medical, neurological, neuropsychological, imaging, genetic, blood and CSF evaluation. Differences in Lp-PLA2 activity between the cognitive diagnosis groups were tested with ANOVA and in multiple linear regression models with adjustment for covariates. Associations between Lp-PLA2 and markers of cardiovascular disease and AD were explored with Spearmans correlation coefficients.ResultsThere was no significant difference in plasma Lp-PLA2 activity between AD (197.1 (standard deviation, SD 38.4) nmol/min/ml) and controls (195.4 (SD 41.9)). Gender, statin use and low-density lipoprotein cholesterol (LDL) were independently associated with Lp-PLA2 activity in multiple regression models. Lp-PLA2 activity was correlated with LDL and inversely correlated with high-density lipoprotein (HDL). AD subjects with APOE-ε4 had higher Lp-PLA2 activity (207.9 (SD 41.2)) than AD subjects lacking APOE-ε4 (181.6 (SD 26.0), P = 0.003) although this was attenuated by adjustment for LDL (P = 0.09). No strong correlations were detected for Lp-PLA2 activity and CSF markers of AD.ConclusionPlasma Lp-PLA2 was not associated with a diagnosis of AD or aMCI in this cross-sectional study. The main clinical correlates of Lp-PLA2 activity in AD, aMCI and cognitively healthy subjects were variables associated with lipid metabolism.

Collaboration


Dive into the Andrew Lockhart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge