Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew M. Elliott is active.

Publication


Featured researches published by Andrew M. Elliott.


Nano Letters | 2008

Modulation of in Vivo Tumor Radiation Response via Gold Nanoshell-Mediated Vascular-Focused Hyperthermia: Characterizing an Integrated Antihypoxic and Localized Vascular Disrupting Targeting Strategy

Parmeswaran Diagaradjane; Anil Shetty; James C. Wang; Andrew M. Elliott; Jon A. Schwartz; Shujun Shentu; Hee C. Park; Amit Deorukhkar; Jason Stafford; S Cho; James W. Tunnell; John D. Hazle; Sunil Krishnan

We report noninvasive modulation of in vivo tumor radiation response using gold nanoshells. Mild-temperature hyperthermia generated by near-infrared illumination of gold nanoshell-laden tumors, noninvasively quantified by magnetic resonance temperature imaging, causes an early increase in tumor perfusion that reduces the hypoxic fraction of tumors. A subsequent radiation dose induces vascular disruption with extensive tumor necrosis. Gold nanoshells sequestered in the perivascular space mediate these two tumor vasculature-focused effects to improve radiation response of tumors. This novel integrated antihypoxic and localized vascular disrupting therapy can potentially be combined with other conventional antitumor therapies.


Cancer Research | 2011

Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma

Wei Lu; Marites P. Melancon; Chiyi Xiong; Qian Huang; Andrew M. Elliott; Shaoli Song; Rui Zhang; Leo G. Flores; Juri G. Gelovani; Lihong V. Wang; Geng Ku; R. Jason Stafford; Chun Li

Advancements in nanotechnology have made it possible to create multifunctional nanostructures that can be used simultaneously to image and treat cancers. For example, hollow gold nanospheres (HAuNS) have been shown to generate intense photoacoustic signals and induce efficient photothermal ablation (PTA) therapy. In this study, we used photoacoustic tomography, a hybrid imaging modality, to assess the intravenous delivery of HAuNS targeted to integrins that are overexpressed in both glioma and angiogenic blood vessels in a mouse model of glioma. Mice were then treated with near-infrared laser, which elevated tumor temperature by 20.7°C. We found that PTA treatment significantly prolonged the survival of tumor-bearing mice. Taken together, these results show the feasibility of using a single nanostructure for image-guided local tumor PTA therapy with photoacoustic molecular imaging.


Biomaterials | 2011

Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer

Marites P. Melancon; Wei Lu; Meng Zhong; Min Zhou; Gan Liang; Andrew M. Elliott; John D. Hazle; Jeffrey N. Myers; Chun Li; R. Jason Stafford

Image-guided thermal ablation of tumors is becoming a more widely accepted minimally invasive alternative to surgery for patients who are not good surgical candidates, such as patients with advanced head and neck cancer. In this study, multifunctional superparamagnetic iron oxide coated with gold nanoshell (SPIO@Au NS) that have both optical and magnetic properties was conjugated with the targeting agent, C225 monoclonal antibody, against epidermal growth factor receptor (EGFR). C225-SPIO@Au NS have an average a diameter of 82 ± 4.4 nm, contain 142 ± 15 antibodies per nanoshell, have an absorption peak in the near infrared (~800 nm), and have transverse relaxivity (r(2)) of 193 and 353 mM(-1) s(-1) versus Feridex™ of 171 and 300 mM(-1) s(-1), using 1.5 T and 7 T MR scanners, respectively. Specific targeting of the synthesized C225-SPIO@Au NS was tested in vitro using A431 cells and oral cancer cells, FaDu, OSC19, and HN5, all of which overexpress EGFR. Selective binding was achieved using C225-SPIO@Au NS but not with the non-targeting PEG-SPIO@Au NS and blocking group (excess of C225 + C225-SPIO@Au NS). In vivo biodistribution on mice bearing A431 tumors also showed selective targeting of C225-SPIO@Au NS compared with the non-targeting and blocking groups. The selective photothermal ablation of the nanoshells shows that without laser treatment there were no cell death and among the groups that were treated with laser at a power of 36 W/cm(2) for 3 min, only the cells treated with C225-SPIO@Au NS had cell killing (p < 0.001). In summary, successful synthesis and characterization of targeted C225-SPIO@Au NS demonstrating both superparamagnetic and optical properties has been achieved. We have shown both in vitro and in vivo that these nanoshells are MR-active and can be selectively heated up for simultaneous imaging and photothermal ablation therapy.


Investigative Radiology | 2011

Theranostics with multifunctional magnetic gold nanoshells: Photothermal therapy and T2* magnetic resonance imaging

Marites P. Melancon; Andrew M. Elliott; Xiaojun Ji; Anil Shetty; Zhi Yang; Mei Tian; Brian A. Taylor; R. Jason Stafford; Chun Li

Objectives:To investigate the multifunctional imaging and therapeutic capabilities of core-shell nanoparticles composed of a superparamagnetic iron oxide (SPIO) core and a gold shell (SPIO@AuNS). Materials and Methods:The magnetic/optical properties of SPIO@AuNS were examined both in an agar gel phantom and in vivo by evaluating contrast-enhanced magnetic resonance imaging (MRI) and by measuring near-infrared (NIR) light-induced temperature changes mediated by SPIO@AuNS. In addition, the biodistribution and pharmacokinetics of 111In-labeled SPIO@AuNS after intravenous injection in mice bearing A431 tumors were evaluated in the presence and absence of an external magnet. Results:In agar phantoms containing SPIO@AuNS, a significant contrast enhancement in T2-weighted MRI was observed and a linear increase in temperature was observed with increasing concentration and laser output power when irradiated with NIR light centered at an 808 nm. In vivo, T2*-MRI delineated SPIO@AuNS and magnetic resonance temperature imaging of the same tumors revealed significant temperature elevations when intratumorally injected with SPIO@AuNS (1 × 1011 particles/mouse) and irradiated with NIR light (65.70°C ± 0.69°C vs. 44.23°C ± 0.24°C for saline + laser). Biodistribution studies in mice intravenously injected with 111In-labeled-SPIO@AuNS(1 × 1013 particles/mouse) had an approximately 2-fold increase in SPIO@AuNS delivered into tumors in the presence of an external magnet compared with tumors without the magnet. Conclusions:Owing to its ability to mediate efficient photothermal ablation of cancer cells under MRI guidance, as well as the ability to be directed to solid tumors with an external magnetic field gradient, multifunctional SPIO@AuNS is a promising theranostic nanoplatform.


Engineering With Computers | 2009

Nanoshell-mediated laser surgery simulation for prostate cancer treatment

Yusheng Feng; David Fuentes; Andrea Hawkins; J. Bass; Marissa Nichole Rylander; Andrew M. Elliott; Anil Shetty; R. Jason Stafford; J. Tinsley Oden

Laser surgery, or laser-induced thermal therapy, is a minimally invasive alternative or adjuvant to surgical resection in treating tumors embedded in vital organs with poorly defined boundaries. Its use, however, is limited due to the lack of precise control of heating and slow rate of thermal diffusion in the tissue. Nanoparticles, such as nanoshells, can act as intense heat absorbers when they are injected into tumors. These nanoshells can enhance thermal energy deposition into target regions to improve the ability for destroying larger cancerous tissue volumes with lower thermal doses. The goal of this paper is to present an integrated computer model using a so-called nested-block optimization algorithm to simulate laser surgery and provide transient temperature field predictions. In particular, this algorithm aims to capture changes in optical and thermal properties due to nanoshell inclusion and tissue property variation during laser surgery. Numerical results show that this model is able to characterize variation of tissue properties for laser surgical procedures and predict transient temperature fields comparable to those measured by in vivo magnetic resonance temperature imaging techniques. Note that the computational approach presented in the study is quite general and can be applied to other types of nanoparticle inclusions.


Medical Physics | 2007

Laser‐induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging

Andrew M. Elliott; R. Jason Stafford; Jon A. Schwartz; James Ze Wang; Anil Shetty; Chirs Bourgoyne; Patrick O'Neal; John D. Hazle

Spherical nanoparticles with a gold outer shell and silica core can be tuned to absorb near-infrared light of a specific wavelength. These nanoparticles have the potential to enhance the treatment efficacy of laser-induced thermal therapy (LITT). In order to enhance both the potential efficacy and safety of such procedures, accurate methods of treatment planning are needed to predict the temperature distribution associated with treatment application. In this work, the standard diffusion approximation was used to model the laser fluence in phantoms containing different concentrations of nanoparticles, and the temperature distribution within the phantom was simulated in three-dimensions using the finite element technique. Magnetic resonance temperature imaging was used to visualize the spatiotemporal distribution of the temperature in the phantoms. In most cases, excellent correlation is demonstrated between the simulations and the experiment (<3.0% mean error observed). This has significant implications for the treatment planning of LITT treatments using gold-silica nanoshells.


Journal of Controlled Release | 2011

Near-infrared light modulated photothermal effect increases vascular perfusion and enhances polymeric drug delivery

Marites P. Melancon; Andrew M. Elliott; Anil Shetty; Qian Huang; R. Jason Stafford; Chun Li

Hyperthermia, which is heating of tumors above 43°C for about 30min, has been known to modulate vascular permeability for enhanced chemotherapy. However, it is not clear whether a similar effect exists when temperature at tumor sites is elevated above 43°C, such as temperature achieved in laser-induced photothermal ablation (PTA) therapy. Also, the effect of timing of chemotherapeutic drug administration following heating in the efficiency of drug delivery is not established. In this study, we investigated the impact of near infrared (NIR) laser irradiated anti-EGFR monoclonal antibody C225-conjugated hollow gold nanospheres (C225-HAuNS) on vascular permeability and subsequent tumor uptake of a water-soluble polymer using combined MRI, ultrasound and optical imaging approaches. Magnetic temperature imaging showed a maximum temperature of 65.2±0.10 °C in A431 tumor xenograft of mice treated with C225-HAuNS plus laser and 47.0±0.33 °C in tumors of mice treated with saline plus laser at 4 W/cm² for 3 min (control) at 2 mm from the light incident surface. Dynamic contrast enhanced (DCE) MRI demonstrated greater than 2-fold increase of DTPA-Gd in the initial area under the curve (IAUC₉₀) in mice injected with C225-HAuNS and exposed to NIR laser compared with control mice at 3 min after laser treatment. Similarly, Power Doppler (PD) ultrasound revealed a 4- to 6-fold increase in percentage vascularization in mice treated with C225-HAuNS plus NIR laser compared to control mice and confirmed increased vascular perfusion immediately after laser treatment. Twenty-four hours later, the blood perfusion was shut down. On optical imaging, tumor uptake of PG-Gd-NIR813, which is the model polymeric drug used, was significantly higher (p-value<0.05) in mice injected with PG-Gd-NIR813 at 5 min after laser treatment than in mice injected with PG-Gd-NIR813 at 24h after laser treatment and the saline-treated mice. In conclusion, laser irradiation of tumors after intravenous injection of C255-HAuNS induces a thermally mediated modulation of the vascular perfusion, which enhances the delivery of polymeric drugs to the tumors at the time phototherapy is initiated.


The Journal of Urology | 2010

Magnetic Resonance Guided, Focal Laser Induced Interstitial Thermal Therapy in a Canine Prostate Model

R. Jason Stafford; Anil Shetty; Andrew M. Elliott; Sherry Klumpp; Roger J. McNichols; Ashok Gowda; John D. Hazle; John F. Ward

PURPOSE We evaluated a newly Food and Drug Administration cleared, closed loop, magnetic resonance guided laser induced interstitial thermal therapy system for targeted ablation of prostate tissue to assess the feasibility of targeting, real-time monitoring and predicting lesion generation in the magnetic resonance environment. MATERIALS AND METHODS Seven mongrel dogs (University of Texas Health Science Center, Houston, Texas) with (2) and without (5) canine transmissible venereal tumors in the prostate were imaged with a 1.5 T magnetic resonance imaging scanner. Real-time 3-dimensional magnetic resonance imaging was used to accurately position water cooled, 980 nm laser applicators to predetermined targets in the canine prostate. Destruction of targeted tissue was guided by real-time magnetic resonance temperature imaging to precisely control thermal ablation. Magnetic resonance predictions of thermal damage were correlated with posttreatment imaging results and compared to histopathology findings. RESULTS Template based targeting using magnetic resonance guidance allowed the laser applicator to be placed within a mean ± SD of 1.1 ± 0.7 mm of the target site. Mean width and length of the ablation zone on magnetic resonance imaging were 13.7 ± 1.3 and 19.0 ± 4.2 mm, respectively, using single and compound exposures. The damage predicted by magnetic resonance based thermal damage calculations correlated with the damage on posttreatment imaging with a slope near unity and excellent correlation (r(2) = 0.94). CONCLUSIONS This laser induced interstitial thermal therapy system provided rapid, localized tissue heating under magnetic resonance temperature imaging control. Combined with real-time monitoring and template based planning, magnetic resonance guided, laser induced interstitial thermal therapy is an attractive modality for prostate cancer focal therapy.


International Journal of Hyperthermia | 2010

Use of gold nanoshells to constrain and enhance laser thermal therapy of metastatic liver tumours.

Andrew M. Elliott; Anil Shetty; James Ze Wang; John D. Hazle; R. Jason Stafford

Purpose: To investigate the impact of intravenously injected gold nanoparticles on interstitially delivered laser induced thermal therapy (LITT) in the liver. Methods: 3D finite element modelling, ex vivo canine liver tissue containing gold nanoparticles absorbing at 800 nm, and agar gel phantoms were used to simulate the presence of nanoparticles in the liver during LITT. Real-time magnetic resonance temperature imaging (MRTI) based on the temperature sensitivity of the proton resonance frequency shift (PRFS) was used to map the spatiotemporal distribution of heating in the experiments and validate the predictions of 3D finite element simulations of heating. Results: Experimental results show good agreement with both the simulation and the ex vivo experiments. Average discrepancy between simulation and experiment was shown to be 1.6°C or less with the maximum difference being 3.8°C due to a small offset in laser positioning. Conclusion: A high nanoshell concentration in the surrounding liver parenchyma, such as that which would be expected from an intravenous injection of gold nanoshells (∼120 nm) acts as both a beam stop for the laser and secondary heat source for the treatment, helping to better heat the lesions and confine the treatment to the lesion. This indicates a potential to use nanoparticles to enhance both the safety and efficacy of LITT procedures in the liver.


Medical Physics | 2008

Dynamic chemical shift imaging for image-guided thermal therapy: Analysis of feasibility and potential

Brian A. Taylor; Ken Pin Hwang; Andrew M. Elliott; Anil Shetty; John D. Hazle; R. Jason Stafford

A fast chemical shift imaging (CSI) technique based on a multiple gradient-recalled acquisition using a small number of echoes with intentional aliasing of the reference lipid peak is studied to determine its feasibility for temperature monitoring. Simulations were implemented to find parameters where the lipid and water peaks can be measured using a Fourier-based peak fitting approach as well as using an innovative autoregressive moving average technique. A phantom consisting of 50% mayonnaise/50% lemon juice was calibrated to temperature and compared to literature values. A porcine kidney was treated ex vivo with an external laser and imaged with the CSI technique with comparisons to temperature readings from a fluoroptic monitoring system and complex phase difference (CPD) calculations. To demonstrate the technique in vivo, a Balb/c mouse with a CT26 xenograft in the subcutaneous lower back was treated using gold-coated, silica-core nanoshells heated with an 808 nm interstitial laser. Compared to standard CPD techniques using a two-dimensional fast spoiled gradient recalled echo, this technique maintains spatiotemporal resolution, has high signal-to-noise ratio and accuracy over a wide range of T2* tissue values, can separate water and lipid signals, and additionally can use the lipid peak, when present, as an internal reference.

Collaboration


Dive into the Andrew M. Elliott's collaboration.

Top Co-Authors

Avatar

John D. Hazle

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Anil Shetty

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

R. Jason Stafford

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

R Stafford

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

David Fuentes

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Chun Li

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

James Ze Wang

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Jon A. Schwartz

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Brian A. Taylor

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Marites P. Melancon

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge