Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew M. Jenner is active.

Publication


Featured researches published by Andrew M. Jenner.


PLOS ONE | 2011

Lipid Pathway Alterations in Parkinson's Disease Primary Visual Cortex

Danni Cheng; Andrew M. Jenner; Guanghou Shui; Wei Fun Cheong; Todd W. Mitchell; Jessica R. Nealon; Woojin Scott Kim; Heather McCann; Markus R. Wenk; Glenda M. Halliday; Brett Garner

Background We present a lipidomics analysis of human Parkinsons disease tissues. We have focused on the primary visual cortex, a region that is devoid of pathological changes and Lewy bodies; and two additional regions, the amygdala and anterior cingulate cortex which contain Lewy bodies at different disease stages but do not have as severe degeneration as the substantia nigra. Methodology/Principal Findings Using liquid chromatography mass spectrometry lipidomics techniques for an initial screen of 200 lipid species, significant changes in 79 sphingolipid, glycerophospholipid and cholesterol species were detected in the visual cortex of Parkinsons disease patients (n = 10) compared to controls (n = 10) as assessed by two-sided unpaired t-test (p-value <0.05). False discovery rate analysis confirmed that 73 of these 79 lipid species were significantly changed in the visual cortex (q-value <0.05). By contrast, changes in 17 and 12 lipid species were identified in the Parkinsons disease amygdala and anterior cingulate cortex, respectively, compared to controls; none of which remained significant after false discovery rate analysis. Using gas chromatography mass spectrometry techniques, 6 out of 7 oxysterols analysed from both non-enzymatic and enzymatic pathways were also selectively increased in the Parkinsons disease visual cortex. Many of these changes in visual cortex lipids were correlated with relevant changes in the expression of genes involved in lipid metabolism and an oxidative stress response as determined by quantitative polymerase chain reaction techniques. Conclusions/Significance The data indicate that changes in lipid metabolism occur in the Parkinsons disease visual cortex in the absence of obvious pathology. This suggests that normalization of lipid metabolism and/or oxidative stress status in the visual cortex may represent a novel route for treatment of non-motor symptoms, such as visual hallucinations, that are experienced by a majority of Parkinsons disease patients.


Free Radical Biology and Medicine | 2008

Measurement of F2-isoprostanes, hydroxyeicosatetraenoic products, and oxysterols from a single plasma sample

Chung-Yung J. Lee; Shan Hong Huang; Andrew M. Jenner; Barry Halliwell

Oxidized lipids such as F2-isoprostanes (F2-IsoPs), hydroxyeicosatetraenoic acid products (HETEs), and cholesterol oxidation products (COPs) are widely believed to be involved in multiple diseases. Usually, each product is measured individually in separate blood samples. In this study we describe a method allowing us to measure F2-IsoPs, HETEs, COPs, and arachidonate using a single sample. Plasma (1 ml) samples from healthy volunteers were diluted with heavy isotopic standards, hydrolyzed in alkali with organic solvent, and then subjected to anionic-exchange solid-phase extraction (SPE). After the SPE column was washed, hexane and hexane/ethyl acetate portions were collected and combined for COPs measurement. Thereafter the column was loaded with hexane/ethanol/acetic acid and fractions were collected for total F2-IsoPs, total HETEs, and arachidonate measurement. All compounds in the eluates were measured by gas chromatography-mass spectrometry. The efficiency of SPE and reproducibility for all compounds measured were high. Levels of total F2-IsoPs (0.45+/-0.26 ng/ml (n=157)), total HETEs (34.06+/-16.35 ng/ml (n=21)), total arachidonate (68.36+/-24.45 microg/ml (n=33)), and COPs (7-ketocholesterol, 12.25+/-6.56 ng/ml; 7beta-hydroxycholesterol, 6.32+/-3.46 ng/ml; 7alpha-hydroxycholesterol, 15.06+/-7.06 ng/ml; 24-hydroxycholesterol, 41.39+/-18.22 ng/ml; and 27-hydroxycholesterol, 29.08+/-16.79 ng/ml (n=26)) were recorded in healthy subjects (age range 20 to 66 years; average male to female ratio 1:1).


Journal of Neuropathology and Experimental Neurology | 2006

Lovastatin modulates increased cholesterol and oxysterol levels and has a neuroprotective effect on rat hippocampal neurons after kainate injury.

Xin He; Andrew M. Jenner; Wei-Yi Ong; Akhlaq A. Farooqui; Shutish C. Patel

This study was carried out to elucidate the effect of a brain-permeable statin (lovastatin) on cholesterol and oxysterol levels of the hippocampus after neuronal injury induced by the excitotoxin, kainic acid. Increased immunolabeling to cholesterol and the oxysterol biosynthetic enzyme, cholesterol 24-hydroxylase, was observed in the rat hippocampus after kainate lesions. This was accompanied by increased levels of cholesterol, 24-hydroxycholesterol (product of cholesterol 24-hydroxylase enzymatic activity), and 7-ketocholesterol in homogenates of the degenerating hippocampus as detected by gas chromatography/mass spectrometry. Hippocampi from rats or organotypic slices that had been treated with kainate plus lovastatin showed significantly lower levels of cholesterol, 24-hydroxycholesterol, and 7-ketocholesterol compared with those that had been treated with kainate only. Lovastatin also modulated hippocampal neuronal loss after kainate treatment in vivo and in vitro. The level of 24-hydroxycholesterol detected in vivo after kainate treatment (>50 &mgr;M) was found to be neurotoxic in hippocampal slice cultures. These results suggest that brain-permeable statins such as lovastatin could have a neuroprotective effect by limiting the levels of oxysterol in brain areas undergoing neurodegeneration.


Lipids | 2013

An Improved High-Throughput Lipid Extraction Method for the Analysis of Human Brain Lipids

Sarah K. Abbott; Andrew M. Jenner; Todd W. Mitchell; Simon H. J. Brown; Glenda M. Halliday; Brett Garner

We have developed a protocol suitable for high-throughput lipidomic analysis of human brain samples. The traditional Folch extraction (using chloroform and glass–glass homogenization) was compared to a high-throughput method combining methyl-tert-butyl ether (MTBE) extraction with mechanical homogenization utilizing ceramic beads. This high-throughput method significantly reduced sample handling time and increased efficiency compared to glass–glass homogenizing. Furthermore, replacing chloroform with MTBE is safer (less carcinogenic/toxic), with lipids dissolving in the upper phase, allowing for easier pipetting and the potential for automation (i.e., robotics). Both methods were applied to the analysis of human occipital cortex. Lipid species (including ceramides, sphingomyelins, choline glycerophospholipids, ethanolamine glycerophospholipids and phosphatidylserines) were analyzed via electrospray ionization mass spectrometry and sterol species were analyzed using gas chromatography mass spectrometry. No differences in lipid species composition were evident when the lipid extraction protocols were compared, indicating that MTBE extraction with mechanical bead homogenization provides an improved method for the lipidomic profiling of human brain tissue.


Free Radical Research | 2007

The identification of antioxidants in dark soy sauce

Huansong Wang; Andrew M. Jenner; Chung-Yung J. Lee; Guanghou Shui; Soon Yew Tang; Matthew Whiteman; Markus R. Wenk; Barry Halliwell

Soy sauce is a traditional fermented seasoning in Asian countries, that has high antioxidant activity in vitro and some antioxidant activity in vivo. We attempted to identify the major antioxidants present, using the 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay as a guide. 3-Hydroxy-2-methyl-4H-pyran-4-one (maltol) was one of several active compounds found in an ethyl acetate extract of dark soy sauce (DSS) and was present at millimolar concentrations in DSS. However, most of the antioxidant activity was present in colored fractions, two of which (CP1 and CP2) were obtained by gel filtration chromatography. Their structural characteristics based on nuclear magnetic resonance (NMR) and electrospray-ionization time-of-flight mass spectrometry (ESI-TOF-MS) analysis suggest that carbohydrate-containing pigments such as melanoidins are the major contributors to the high antioxidant capacity of DSS.


Free Radical Research | 2004

Do Mitochondria make Nitric Oxide? No?

Yvonne Tay; Kok Seong Lim; Fwu-Shan Sheu; Andrew M. Jenner; Matthew Whiteman; Kim Ping Wong; Barry Halliwell

Several papers have claimed that mitochondria contain nitric oxide synthase (NOS) and make nitric oxide (NO•) in amounts sufficient to affect mitochondrial respiration. However, we found that the addition of l-arginine or the NOS inhibitor l-NMMA to intact rat liver mitochondria did not have any effect on the respiratory rate in both State 3 and State 4. We did not detect mitochondrial NO• production by the oxymyoglobin oxidation assay, or electrochemically using an NO• electrode. An apparent NO• production detected by the Griess assay was identified as an artifact. NO• generated by eNOS added to the mitochondria could easily be detected, although succinate-supplemented mitochondria appeared to consume NO•. Our data show that NO• production by normal rat liver mitochondria cannot be detected in our laboratory, even though the levels of production claimed in the literature should easily have been measured by the techniques used. The implications for the putative mitochondrial NOS are discussed.


Journal of Nutrition | 2009

A Metabolite Profiling Approach to Identify Biomarkers of Flavonoid Intake in Humans

Wai Mun Loke; Andrew M. Jenner; Julie M. Proudfoot; Allan J. McKinley; Jonathan M. Hodgson; Barry Halliwell; Kevin D. Croft

Flavonoids are phytochemicals that are widespread in the human diet. Despite limitations in their bioavailability, experimental and epidemiological data suggest health benefits of flavonoid consumption. Valid biomarkers of flavonoid intake may be useful for estimating exposure in a range of settings. However, to date, few useful flavonoid biomarkers have been identified. In this study, we used a metabolite profiling approach to examine the aromatic and phenolic profile of plasma and urine of healthy men after oral consumption of 200 mg of the pure flavonoids, quercetin, (-)-epicatechin, and epigallocatechin gallate, which represent major flavonoid constituents in the diet. Following enzymatic hydrolysis, 71 aromatic compounds were quantified in plasma and urine at 2 and 5 h, respectively, after flavonoid ingestion. Plasma concentrations of different aromatic compounds ranged widely, from 0.01 to 10 micromol/L, with variation among volunteers. None of the aromatic compounds was significantly elevated in plasma 2 h after consumption of either flavonoid compared with water placebo. This indicates that flavonoid-derived aromatic compounds are not responsible for the acute physiological effects reported within 2 h in previous human intervention studies involving flavonoids or flavonoid-rich food consumption. These effects are more likely due to absorption of the intact flavonoid. Our urine analysis suggested that urinary 4-ethylphenol, benzoic acid, and 4-ethylbenzoic acid may be potential biomarkers of quercetin intake and 1,3,5-trimethoxybenzene, 4-O-methylgallic acid, 3-O-methylgallic acid, and gallic acid may be potential markers of epigallocatechin gallate intake. Potential biomarkers of (-)-epicatechin were not identified. These urinary biomarkers may provide an accurate indication of flavonoid exposure.


Neuroreport | 2001

6-hydroxydopamine increases hydroxyl free radical production and DNA damage in rat striatum

Boris Ferger; Sarah Rose; Andrew M. Jenner; Barry Halliwell; Peter Jenner

Oxidative damage is considered to be an important factor of 6-hydroxydopamine (6-OHDA) toxicity. To address this issue, microdialysis probes were implanted into the striatum of Wistar rats and perfused with 6-OHDA. Salicylate was included in the perfusion fluid to measure 2,3-dihydroxybenzoic acid (2,3-DHBA) as a marker of hydroxyl radical formation using HPLC with electrochemical detection. Additionally, striatal tissue was analysed for DNA base alterations using gas chromatography-mass spectrometry. 6-OHDA administration resulted in a rapid and substantial 6.6-fold increase in 2,3-DHBA formation and also increased levels of the modified DNA bases 5-hydroxycytosine, hypoxanthine and 2,6-diamino-4-hydroxy-5-formamidopyrimidine. Hydroxyl radical formation and DNA base alterations are early phenomena of 6-OHDA toxicity and provide clues to the processes that may be involved in the initiation of cell death in Parkinsons disease.


Cell Death & Differentiation | 2012

Lanosterol induces mitochondrial uncoupling and protects dopaminergic neurons from cell death in a model for Parkinson's disease

Lynette Lim; Vernice Jackson-Lewis; Loo Chin Wong; Guanghou Shui; Angeline X. H. Goh; Sashi Kesavapany; Andrew M. Jenner; Marc Fivaz; Serge Przedborski; Markus R. Wenk

Parkinsons disease (PD) is a neurodegenerative disorder marked by the selective degeneration of dopaminergic neurons in the nigrostriatal pathway. Several lines of evidence indicate that mitochondrial dysfunction contributes to its etiology. Other studies have suggested that alterations in sterol homeostasis correlate with increased risk for PD. Whether these observations are functionally related is, however, unknown. In this study, we used a toxin-induced mouse model of PD and measured levels of nine sterol intermediates. We found that lanosterol is significantly (∼50%) and specifically reduced in the nigrostriatal regions of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, indicative of altered lanosterol metabolism during PD pathogenesis. Remarkably, exogenous addition of lanosterol rescued dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP+)-induced cell death in culture. Furthermore, we observed a marked redistribution of lanosterol synthase from the endoplasmic reticulum to mitochondria in dopaminergic neurons exposed to MPP+, suggesting that lanosterol might exert its survival effect by regulating mitochondrial function. Consistent with this model, we find that lanosterol induces mild depolarization of mitochondria and promotes autophagy. Collectively, our results highlight a novel sterol-based neuroprotective mechanism with direct relevance to PD.


Biomarkers | 1999

8-Chloroadenine: a novel product formed from hypochlorous acid-induced damage to calf thymus DNA

Matthew Whiteman; Andrew M. Jenner; Barry Halliwell

Hypochlorous acid (HOCl) is formed by the action of the enzyme myeloperoxidase on hydrogen peroxide and chloride ions. It has been shown to be highly bactericidal and cytotoxic by a variety of mechanisms, one of which, may be the modification of DNA. Previously we have demonstrated by GC-MS analysis that exposure of calf thymus DNA to HOCl causes extensive pyrimidine modification, including 5-chlorocytosine formation. Using GC-MS analysis, we now demonstrate the formation of an additional chlorinated base product, 8-Cl adenine. The addition of 50 μM HOCl was sufficient to produce a significant increase in this product. The reaction of HOCl with adenine in calf thymus DNA was shown to be rapid with the reaction complete after 1 min. pH-dependence studies suggest HOCl rather than its conjugate base (OCl-) to be responsible for 8-Cl adenine formation. Other commercially available chlorinated base products, 6-Cl guanine or 2-Cl adenine were not detected. Therefore, 8-Cl adenine might prove a useful biomarker for studying the role of reactive chlorine species (RCS) during inflammatory processes.Hypochlorous acid (HOCl) is formed by the action of the enzyme myeloperoxidase on hydrogen peroxide and chloride ions. It has been shown to be highly bactericidal and cytotoxic by a variety of mechanisms, one of which, may be the modification of DNA. Previously we have demonstrated by GC-MS analysis that exposure of calf thymus DNA to HOCl causes extensive pyrimidine modification, including 5-chlorocytosine formation. Using GC-MS analysis, we now demonstrate the formation of an additional chlorinated base product, 8-Cl adenine. The addition of 50 μM HOCl was sufficient to produce a significant increase in this product. The reaction of HOCl with adenine in calf thymus DNA was shown to be rapid with the reaction complete after 1 min. pH-dependence studies suggest HOCl rather than its conjugate base (OCl-) to be responsible for 8-Cl adenine formation. Other commercially available chlorinated base products, 6-Cl guanine or 2-Cl adenine were not detected. Therefore, 8-Cl adenine might prove a useful biomarker ...

Collaboration


Dive into the Andrew M. Jenner's collaboration.

Top Co-Authors

Avatar

Barry Halliwell

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Brett Garner

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adena S. Spiro

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar

Wei-Yi Ong

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Chung-Yung J. Lee

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus R. Wenk

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Shan Hong Huang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Soon Yew Tang

University of Wollongong

View shared research outputs
Researchain Logo
Decentralizing Knowledge